Trong mặt phẳng cho n điển phân biệt. Cứ 2 điểm trong n điểm đó vẽ được một đoạn thẳng, tổng số đoạn thẳng vẽ được là 2021055. Tính số n điểm phân biệt
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Lấy 1 điểm trong số 100 điểm đó.
Từ điểm đó kẻ với 99 điểm còn lại ta được 99 đoạn thẳng.
Vì có 100 điểm nên có100.99(đoạn thẳng).
Nhưng nếu tính như vậy thì số đoạn thẳng sẽ được lặp lại hai lần.
Vậy vẽ được tất cả số đoạn thẳng là:
100.99:2=4950(đoạn thẳng).
Sửa đề: Ko trùng với các điểm A,B
Theo đề, ta có: \(C^2_{n+2}=120\)
=>\(\dfrac{\left(n+2\right)!}{\left(n+2-2\right)!\cdot2!}=120\)
=>(n+2)(n+1)=240
=>n+1=15
=>n=14
Gỉa sử không có a điểm nào thẳng hàng thì vẽ được : 20.19 : 2 = 190 (đường thẳng)
Số đường thẳng dôi ra là : 190 - 170 = 20 (đường thẳng)
Ta có :
\(\frac{a.\left(a-1\right)}{2}-1=20\)
\(\frac{a.\left(a-1\right)}{2}=20+1=21\)
\(a.\left(a-1\right)=21.2=47=7.6\)
Vậy a = 7
Giả sử không có a điểm nào thẳng hàng thì vẽ được:
20.19 : 2 = 190 (đường thẳng
Số đường thẳng dôi ra là:
190 - 170 = 20 (đường thẳng)
=> \(\frac{a\cdot\left(a-1\right)}{2}-1=20\)=> \(\frac{a\cdot\left(a-1\right)}{2}=21\)=> \(a\cdot\left(a-1\right)=42=7.6\Rightarrow a=7\)
ai biết thí giúp mình với mình k cho
sakura caaujpits ko giúp mình đi