có tồn tại hay ko số nguyên n sao cho n2000+1 chia hết cho 10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cách làm của Lê Chí Cường đúng:
Tuy nhiên: (n500)2 có tận cùng là 0;1;4;5;6;9
=> ((n500)2)2 có thể tận cùng là: 0;1;5;6 không phải là 0;1;4;5;6
giả sử n2000+1 chia hết cho 10
=>n2000 có tận cùng =8
xét n=2k+1 =>n4 có tận cùng =1
=>(n4)500=n2000 có tận cùng =1 (trái giả thuyết)
xét n=2k =>n4 có tận cùng =6 hoặc 0
=>(n4)500=n2000 có tận cùng =6 hoặc 0(trái giả thuyết)
vậy không có n
có tồn tại hay ko số tự nhiên k ( k thuộc N* ) sao cho 2003^k-1 chia hết cho 51
giúp minh ddeeeee =((
Ta có 2003 là số lẻ suy ra 2003^k cũng sẽ là số lẻ mà 1 lại là số lẻ suy ra 2003^k-1 là số chẵn mà 51 là số chăn suy ra 2003^k-1 không chia hết cho 51 vậy ko tồn tại
Giả sử có tồn tại một số n^2000 +1 chia hết cho 10
=> n^2000+1 chia hết cho 2 và 5
* do n^2000+1 chia hết cho 5 => n^2000 có tận cùng là 4 hoặc 9
TH1 n^2000 có tận cùng là 9
do 2000 chia hết cho 4 => n^2000 có cùng số tận cùng với n^4 => n^4 có tận cùng là 9 => n lẻ
nếu n có tận cùng là 1=> n^4 có tận cùng là 1 => loại
nếu n có tận cùng là 3 => n^4 có tận cùng là 1=> loại
nếu n có tận cùng là 5 => n^4 có tận cùng là 5 => loại
nếu n có tận cùng là 7 => n^4 có tận cùng là 1 => loại
nếu n có tận cùng là 9=> n^4 có tận cùng 1=> loại
vậy n ko tận cùng là 9
th2 ; n ^2000 có tận cùng là 4 => n ^2000 chẵn => n^2000+1 lẻ => n^2000 +1 ko chia hết cho 2 => loại
vậy giả sử sai . ko tồn tại số n^2000 + 1 chia hết cho 10
\(n^{2000}+1=\left(n^{1000}\right)^2+1\)
Vì các số bình phương có tận cùng bằng 0,1,9,6,5;4 mà tận cùng băng 9 thì (n^1000)^2 + 1 tận cùng 10 chia hết cho 10
Vậy có tồn tại ( l ike nha)