Cho hình bình hành ABCD, AB= 10cm, AD= 6cm, góc A > góc B. Tính số đo các góc của hình bình hành ABCD.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 10:
góc A=180-130=50 độ
góc B=(180+50)/2=230/2=115 độ
góc C=180-115=65 độ
\(\widehat{A}=\widehat{C}=135^0\)
\(\widehat{B}=\widehat{D}=45^0\)
Cho tứ giác ABCD là hình bình hành số đo góc a bằng 120 độ tính số đo góc còn lại của hình bình hành
Vì ABCD là hbh nên \(\widehat{A}=\widehat{C}=120^0\) và AB//CD
Do đó \(\widehat{B}=\widehat{D}=180^0-\widehat{A}=60^0\) (trong cùng phía)
`a)` Xét hbh `ABCD` có: `E,F` là tđ của `BC;AD`
`=>EF` là đường trung bình của hbh `ABCD`
`=>EF=AB=DC` `(1)`
`@E;F` là trung điểm của `BC;AD=>{(BE=1/2BC=>BC=2BE),(AF=1/AD=>AD=2AF):}`
Mà `AD=2AB=BC`
`=>AF=AB=BE` `(2)`
Từ `(1);(2)=>AF=BE=AB=EF=>` T/g `ABEF` là hình thoi
`b)` C/m: `BEDF` là hbh chứ nhỉ?
Có: `AF=DF`
Mà `AF=BE`
`=>DF=BE` mà `DF //// BE`
`=>` T/g `BEDF` là hbh
`c)` Xét `\triangle AFB` có: `AF=AB` và `\hat{A}=60^o`
`=>\triangle AFB` đều `=>{(AF=BF),(\hat{AFB}=60^o ):}`
Mà `AF=DF`
`=>DF=BF`
`=>\triangle DFB` cân
`=>\hat{BFD}+2\hat{FDB}=180^o`
`=>180^o -\hat{AFB}+2\hat{ADB}=180^o`
`=>180^o -60^o +2\hat{ADB}=180^o =>\hat{ADB}=30^o`
mình dốt hình lắm chỉ biết số học thôi
CHÚC BẠN HỌC GIỎI
TK MÌNH NHÉ