Cho tứ giác ABCD có góc A bằng 3 lần góc B; góc C bằng 2/3 góc A; góc D bằng 2 lần góc C. Tính các góc của tứ giác đó.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: góc B- góc A=200 <=> Góc B= góc A+200 (1) ; góc C= 3 góc A ( giả thiết) (2) ; góc D- góc C=200 <=> góc D= 3 góc A+200 (theo(2))
Mà : góc A+ góc B+ góc C+ góc D=3600 (*). Thay (1);(2);(3) vào (*), ta được: Góc A+ góc A+200+3 góc A+3 góc A+200=3600
<=> Góc A= 400 => Các góc còn lại
Gọi số đo góc A là x
thì số đo góc B là: x + 20
số đo góc C là: 3x => số đo góc D là: 3x + 20
Ta có: \(x+\left(x+20\right)+3x+\left(3x+20\right)=180\)
\(\Leftrightarrow\)\(8x=140\)
\(\Leftrightarrow\)\(x=17,5\)
Vậy góc A = 17,50
góc B = 17,50 + 200 = 37,50
góc C = 17,5 . 3 = 52,50
góc D = 52,50 + 200 = 72,50
1. Xét tứ giác ABCD ta có :
^A + ^B + ^C + ^D = 3600 ( định lí )
mà 4 góc đó bằng nhau
=> ^A = ^B = ^C = ^D = 3600/4 = 900
2. Xét tứ giác ABCD ta có :
^A + ^B + ^C + ^D = 3600 ( định lí ) (1)
mà ^A , ^B , ^C , ^D lần lượt tỉ lệ với 1 ; 2 ; 4 ; 5
=> \(\frac{\widehat{A}}{1}=\frac{\widehat{B}}{2}=\frac{\widehat{C}}{4}=\frac{\widehat{D}}{5}\)(2)
Từ (1) và (2) => Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{\widehat{A}}{1}=\frac{\widehat{B}}{2}=\frac{\widehat{C}}{4}=\frac{\widehat{D}}{5}=\frac{\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}}{1+2+4+5}=\frac{360^0}{12}=30^0\)
=> ^A = 300
^B = 300.2 = 600
^C = 300.4 = 1200
^D = 300.5 = 1500
Xét tứ giác ABCD có các góc bằng nhau
=> \(\widehat{A}=\widehat{B}=\widehat{C}=\widehat{D}\)
Mà \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\left(dl\right)\)
\(\Leftrightarrow4\widehat{A}=360^o\Leftrightarrow\widehat{A}=\widehat{B}=\widehat{C}=\widehat{D}=90^o\)
Bài 2:
Xét tứ giác ABCD
=> \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)
Vì các góc tứ giác ABCD lần lượt tỉ lệ với 1:2:4:5
\(\Rightarrow\frac{\widehat{A}}{1}=\frac{\widehat{B}}{2}=\frac{\widehat{C}}{4}=\frac{\widehat{D}}{5}\)VÀ \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)
Theo tính chất dãy tỉ số bằng nhau
\(\frac{\widehat{A}}{1}=\frac{\widehat{B}}{2}=\frac{\widehat{C}}{4}=\frac{\widehat{D}}{5}=\frac{\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}}{1+2+4+5}=\frac{360^o}{12}=30^o\)
Do đó
\(\frac{\widehat{A}}{1}=30^o\Leftrightarrow\widehat{A}=30^o\)
\(\frac{\widehat{B}}{2}=30^o\Leftrightarrow\widehat{B}=60^o\)
\(\frac{\widehat{C}}{4}=30^o\Leftrightarrow\widehat{C}=120^o\)
\(\frac{\widehat{C}}{5}=30^o\Leftrightarrow\widehat{C}=150^o\)
Vậy.........
giúp mk với