Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta thấy 4 = 1.4 = (-1).(-4) = 2.2 = (-2).(-2)
như vậy các số (trong 11 số cần tìm chỉ có thể lấy từ những cặp tương ứng như trên), và xếp xen kẻ nhau: chẳn hạn 1,4,1,4...
mặt khác, giả sử ta chọn số a1 làm mốc, thì do có 11 số (số lẻ) nên số a11 = a1
do xếp vòng tròn nên vẫn phải có a11.a1 = 4 => a1.a1 = 4 => a1 = -2 hoặc a1 = 2
Vậy 11 số nguyên phải bằng nhau và bằng -2 hoặc đều bằng 2
b) Nếu có 10 số, thì chọn thêm được 2 cặp 1,4 hoặc -1,-4
khi đó có 4 đáp số là:
* các số đều bằng -2
* các số đều bằng 2
* 5 số bằng -1, 5 số bằng -4 xếp xen kẻ nhau
* 5 số bằng 1, 5 số bằng 4 xếp xen kẻ nhau.
Gọi 11 số hữu tỉ đó lần lượt là \(a_1,a_2,a_3...a_{11}\)
\(\Rightarrow a_1\cdot a_2=9\)và \(a_2\cdot a_3=9\)(theo giả thiết) \(\Rightarrow a_1=a_3\)
Tương tự \(\Rightarrow a_1=a_3=a_5=a_7=a_9=a_{11}=m\) và \(a_2=a_4=a_6=a_8=a_{10}=n\)
=> trên vòng tròn chỉ có hai số m và n xen kẽ thỏa mãn m, n là số hữu tỉ và \(m\cdot n=9\)
=> tổng 11 số đó là \(6\cdot m+5\cdot n\)với mọi m, n thỏa mãn m, n là số hữu tỉ và \(m\cdot n=9\)