K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2016

vfkdkfdfdkjfkdfjdfkjdkfjmdcxnciewepokadlsfmhujgtursfezd/klx

27 tháng 2 2016

(3-x)(x+2)>0

=> 3-x và x+2 cùng dấu

+)xét trường hợp 3-x>0 và x+2>0

=>x<3 và x>-2

=>-2<x<3

+)xét trường hợp 3-x<0 và x+2<0

=>x>3 và x<-2(vô lí)

=>-2<x<3

=> x thuộc {-1;0;1;2}

10 tháng 12 2014

1) ta có 1 = -1.(-1-0)

=> a là số nguyên dương vì = 1

=> b là số nguyên âm vì = -1

=> c là số không vì = 0

3 tháng 5 2019

a) \(6xy+4x-9y-7=0\)

  \(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)

\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)

\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)

Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)

Tự làm típ

4 tháng 5 2019

\(A=x^3+y^3+xy\)

\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)

\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))

\(A=x^2+y^2\)

Áp dụng bất đẳng thức Bunhiakovxky ta có :

\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)

\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)

\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)

Hay \(x^3+y^3+xy\ge\frac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)

13 tháng 2 2019

gõ lại đề đi nhưng nếu ghi đúng đề thì chỉ có x=y=0

13 tháng 2 2019

\(\left|x\right|+2\left|y\right|=0\)

Ta có\(\left|x\right|\ge0\forall x;\left|y\right|\ge0\Rightarrow2\left|y\right|\ge0\forall y\)

\(\Rightarrow\left|x\right|+2\left|y\right|\ge0\forall x;y\)

\(\Rightarrow\left|x\right|+2\left|y\right|=0\)

\(\Leftrightarrow\hept{\begin{cases}x=0\\2y=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=0\end{cases}}}\)

\(3\left|x\right|+2\left|y\right|=0\)

Ta có \(3\left|x\right|\ge0\forall x;2\left|y\right|\ge0\forall y\)

\(\Rightarrow3\left|x\right|+2\left|y\right|\ge0\forall x,y\)

\(\Rightarrow3\left|x\right|+2\left|y\right|=0\)

\(\Leftrightarrow\hept{\begin{cases}3x=0\\2y=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=0\end{cases}}}\)

p/s : sai thôi