K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2016

Chứng minh rằng: 
20092008+20112010 chia hết cho 2010
20092008 + 1) + (20112010 – 1)
= (2009 + 1)(20092007 - …) + (2011 – 1)(20112009 + …)
= 2010(20112009 + …) chia hết cho 2010

16 tháng 12 2018

\(2011\equiv1\left(mod2010\right)\Rightarrow2011^{2009}\equiv1\left(mod2010\right)\)

\(2009\equiv-1\left(mod2010\right)\Rightarrow2009^{2011}\equiv-1\left(mod2010\right)\)

\(\Rightarrow2009^{2011}+2011^{2009}\equiv0\left(mod2010\right)\Rightarrow2009^{2011}+2011^{2009}⋮2010\)

16 tháng 12 2018

mod là sao

8 tháng 4 2021

Nó có chia hết à ??? 

Ta thấy 2009 chia 2010 dư  -1 

=> 2009 ^ 2008 chia 2010 dư 1 (1)

Lại có  2011 chia 2010 dư 1

=> 2011^2010 chia 2020 dư 1 (2)

Từ (1)(2) => 2009^2008-2011^2020 chia 2010 dư 2 (sai )

9 tháng 4 2021

2009^2008+2011^2010 chia hết cho 2010 2009^2008+2011^2010

=2009^2008+2011^2010

=2009^2008+2011^2010+1-1

=(2009^2008+ 1) + (2011^2010– 1)

= (2009 + 1)(2009^2007- …) + (2011 – 1)(2011^2009 + …)

= 2010(2009^2008 - …) + 2010(2011^2009+ …) chia hết cho 2010  

15 tháng 12 2018

\(2009^{2011}+2011^{2009}=\left(2009^{2011}+1\right)+\left(2011^{2009}-1\right)\)

Ta có: \(a^n+b^n⋮\left(a+b\right)\) với n là số lẻ.

\(a^n-b^n⋮\left(a-b\right)\forall n\inℕ^∗\)

Nên \(2009^{2011}+1⋮\left(2009+1\right),2011^{2009}-1⋮\left(2011-1\right)\)

Vậy \(2009^{2011}+1+2011^{2009}-1⋮2010\Rightarrow2009^{2011}+2011^{2009}⋮2010\)

15 tháng 12 2018

Tại sao an+bn chia hết a+b

16 tháng 4 2017

From: exoplanet

To: Nguyễn Ngọc Phương Thảo

\(2009^{2008}+2011^{2010}=\left(2009^{2008}+1\right)+\left(2011^{2010}-1\right)\)

\(=\left(2009+1\right)\left(2009^{2007}+a\right)+\left(2011-1\right)\left(2011^{2009}-b\right)\)

16 tháng 10 2017

undefined

25 tháng 10 2017

cái này bạn chụp màn hình trên olm à