Bài 1.CHo tam giác nhọn ABC có các đường cao AD , BE , CF cắt nhau tại H
1. Chứng minh tam giác ABE và tam giác ACF đồng dạng
Xét \(\Delta ABE\) và \(\Delta ACF\) :
\(\widehat{AEB}=\widehat{AFC}\) (\(=90^o\) )
\(\widehat{A}\) chung
\(\Rightarrow\Delta ABE\sim\Delta ACF\left(g.g\right)\)
2.Chứng minh \(\widehat{AEF}=\widehat{ABC}\)
Vì tam giác ABE đồng dạng với tam giác ACF ( cmt )
\(\Rightarrow\dfrac{AB}{AC}=\dfrac{AF}{AE}\)
Xét tam giác AEF và tam giác ABC:
\(\widehat{A}\) chung
\(\dfrac{AB}{AC}=\dfrac{AF}{AE}\) (cmt )
\(\Rightarrow\Delta AEF\sim\Delta ABC\left(c.g.c\right)\)
\(\Rightarrow\widehat{AEF}=\widehat{ABC}\) ( hai góc t/ứ)
3.Vẽ DM vuông gosc với AC tại M . Gọi K là giao điểm của CH và DM . Chứng minh \(\dfrac{BH}{EH}=\dfrac{DK}{MK}\) và \(AH.AD+CH.CF=\dfrac{CD^4}{CM^2}\)
Bài 2 : Cho ba số \(x,y,z\) khác 0 và \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\) . Tính giá trị của biểu thức \(P=\dfrac{2017}{3}xyz\left(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}\right)\)
\(BE||DM\) (cùng vuông góc AC)
Theo định lý Talet: \(\left\{{}\begin{matrix}\dfrac{MK}{EH}=\dfrac{CK}{CH}\\\dfrac{DK}{BH}=\dfrac{CK}{CH}\end{matrix}\right.\) \(\Rightarrow\dfrac{MK}{EH}=\dfrac{DK}{BH}\)
\(\Rightarrow\dfrac{BH}{EH}=\dfrac{DK}{MK}\)
Hai tam giác vuông AHE và ACD đồng dạng (chung góc A) \(\Rightarrow\dfrac{AH}{AC}=\dfrac{AE}{AD}\Rightarrow AH.AD=AC.AE\)
Tương tự CHE đồng dạng CAF \(\Rightarrow\dfrac{CH}{AC}=\dfrac{CE}{CF}\Rightarrow CH.CF=AC.CE\)
\(\Rightarrow AH.AD+CH.CF=AC.AE+AC.CE=AC\left(AE+CE\right)=AC^2\) (1)
Lại có 2 tam giác vuông ACD và DCM đồng dạng (chung góc C)
\(\Rightarrow\dfrac{AC}{CD}=\dfrac{CD}{CM}\Rightarrow AC=\dfrac{CD^2}{CM}\Rightarrow AC^2=\dfrac{CD^4}{CM^2}\) (2)
(1); (2) suy ra đpcm