sử dụng tính chất phân phối của phếp nhân đối vs phép cộng để đưa các tích sau về dạng tổng
a) (a+b).(a+b) b) (a-b)^2
c)(a+b)(a-b) d)(a+b)^3
e) (a-b)^3 g) (a+b).(a^2-ab+b^2)
f) (a-b).(a^2+ab+b^2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cái này lên lớp 8 mới hok nhưng bạn chịu khó hiểu nha :
\(\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(=a^3-a^2b+ab^2+a^2b-ab^2+b^3\)
Ta thấy dấu - vs dấu + triệt tiêu nha còn :
\(=a^3+b^3\)
Thế là xong
Ủng hộ mik nha
Thnaks
\(\left(a-b\right)^2=\left(a-b\right)\left(a-b\right)=\left(a-b\right).a-\left(a-b\right).b=a^2-ab-\left(ab-b^2\right)=a^2-ab-ab+b^2=a^2-2.ab+b^2\)
\(\left(a-b\right)^3=\left(a-b\right)^2.\left(a-b\right)=\left(a^2-2.ab+b^2\right).\left(a-b\right)=\left(a^2-2ab+b^2\right).a-\left(a^2-2ab+b^2\right).b\)\(=\left(a^3-2.a^2.b+a.b^2\right)-\left(b.a^2-2.b^2.a+b^3\right)=a^3-2.a^2.b+a.b^2-b.a^2+2.b^2.a-b^3=a^3-3.a^2.b+3.b^2.a-b^3\)
1) (a+b).(a+b)=(a+b)2=a2+2ab+b2
2) (a-b)2=a2-2ab+b2
3) (a+b).(a-b)=a2-b2
4) (a+b)3=a3+3a2b+3ab2+b3
5) (a-b)3=a3-3a2b+3ab2-b3
6) (a+b).(a2-ab+b2)=a3+b3
7) (a-b).(a2+ab+b2)=a3-b3
mấy cái ày là hằng đẳng thức đáng nhớ mà
lấy a+a b+b
lấy b^2-a
lấy a.b b.a
a^3 +b
b^3-a
hai câu cuối thì mình k biết
1) \(\left(a+b\right).\left(a+b\right)=a.\left(a+b\right)+b.\left(a+b\right)=a^2+ab+b^2+ab\)
2) \(\left(a-b\right)^2=\left(a-b\right).\left(a-b\right)=a.\left(a-b\right)-b.\left(a-b\right)=a^2-ab-ab+b^2\)
\(=a^2+\left(-ab\right)+\left(-ab\right)+b^2\)
3) \(\left(a+b\right).\left(a-b\right)=a.\left(a-b\right)+b.\left(a-b\right)=a^2-ab+ab-b^2=a^2-b^2\)
\(=a^2+-\left(b^2\right)\)
4) \(\left(a+b\right)^3=\left(a+b\right).\left(a+b\right).\left(a+b\right)=a.\left(a+b\right).\left(a+b\right)+b.\left(a+b\right).\left(a+b\right)\)
\(=\left[a.\left(a+b\right)\right].\left(a+b\right)+\left[b.\left(a+b\right)\right].\left(a+b\right)=\left(a^2+ab\right).\left(a+b\right)+\left(ab+b^2\right).\left(a+b\right)\)
\(=a^2.\left(a+b\right)+ab.\left(a+b\right)+ab.\left(a+b\right)+b^2.\left(a+b\right)\)
\(=a^3+a^2b+a^2b+ab^2+a^2b+ab^2+b^2a+b^3\)
5) \(\left(a-b\right)^3=\left(a-b\right).\left(a-b\right).\left(a-b\right)=a.\left(a-b\right).\left(a-b\right)-b.\left(a-b\right).\left(a-b\right)\)
\(=\left(a^2-ab\right).\left(a-b\right)-\left(ba-b^2\right).\left(a-b\right)\)
\(=a^2.\left(a-b\right)-ab.\left(a-b\right)-ba.\left(a-b\right)+b^2.\left(a-b\right)\)
\(=a^3-a^2b-a^2b+ab^2-ba^2+b^2a-ba^2+b^2a-b^3\)
6) \(\left(a+b\right).\left(a^2-ab+b^2\right)=a.\left(a^2-ab+b^2\right)+b.\left(a^2-ab+b^2\right)\)
\(=a^3-a^2b+ab^2+ba^2-ab^2+b^3\)
\(=a^3+b^3\)
7) \(\left(a-b\right).\left(a^2+ab+b^2\right)=a.\left(a^2+ab+b^2\right)-b.\left(a^2+ab+b^2\right)\)
\(=a^3+a^2b+ab^2-ba^2-ab^2-b^3\)
\(=a^3-b^3\)
1 a^2+2ab+b^2
2 a^2-2ab+b^2
3 a^2-b^2
4 a^3+3a^2b+3ab^2+b^3
5 a^3-3a^2b+3ab^2-b^3
6 a^3+b^3
7 a^3-b^3
Tích 1 : (a + b) . (a + b) = a . (a + b) + b . (a + b) = a2 + ab + ba + b2 = a2 + b2 + 2ab
Tích 2 : (a - b)2 = (a - b) . (a - b) = a . (a - b) - b . (a - b) = a2 - ab - ba - b2 = a2 - b2 = a2 + (-b2)
Tích 3 : (a + b) . (a - b) = a . (a - b) + b . (a - b) = a2 - ab + ba - b2 = a2 + b2
Làm tạm 3 tích đã tý làm nốt !