Chứng minh rằng nếu a va b la cac so nguyen aa2 + bb2 chia hết cho 3 thì a va b cùng chia hết cho 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có một phép tính ví dụ 2CH 2;4CH2 mà3 KC2 nên2c4c3KCm
a,gọi 3 số lẻ liên tiếp là:a+1,a+3,a+5(a thuộcn;a=2k)
Có a+5+a+1+a+3=3a+9=6k+9
#ko chia hết cho 6
Nhỡ đâu \(a+\dfrac{b^2}{a}\)hoặc \(b+\dfrac{a^2}{b}\)chia hết cho 7 thì sao bạn ?
Ta có: \(a^2+b^2⋮7\)
\(\Leftrightarrow a\left(a+\dfrac{b^2}{a}\right)⋮7\Rightarrow a⋮7\)
\(\Leftrightarrow b\left(b+\dfrac{a^2}{b}\right)⋮7\Rightarrow b⋮7\)
a) Ta có:
a = 3k + r
b = 3h + r
(Chú ý k > h vì a > b)
a - b = 3k + r - 3h - r
= 3(k - h)
\(\Rightarrow\)
b) Đề sai. Vì nếu a : 3 dư 2 và b chia hết cho 3 thì tổng a + b sẽ không chia hết cho 3