tìm số tự nhiên có hai chữ số biết tổng các bình phương của hai chữ số bằng 5 và nếu đổi chỗ hai chữ số cho nhau thì ta được một số mới lớn hơn số ban đầu 36 đơn vị
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(x\) là chữ số hàng chục \(\left(x\le9,x\in Z^+\right)\)
y là chữ số hàng đơn vị \(\left(y\le9,y\in N\right)\)
Do tổng hai chữ số là 10 nên: \(x+y=10\) (1)
Do khi đổi chỗ hai chữ số cho nhau được số mới lớn hơn số ban đầu 36 đơn vị nên: \(10y+x-10x-y=36\Leftrightarrow-9x+9y=36\) (2)
Từ (1) và (2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}x+y=10\\-9x+9y=36\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=10\\x-y=-4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x=6\\x+y=10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=7\end{matrix}\right.\) (nhận)
Vậy số cần tìm là 37
Gọi 2 c số t nhiên đó là a, b (đk)
tổng các bình phương của hai chữ số bằng 50 ...=> a2+b2=5a2+b2=50 (*)
và nếu đổi chỗ hai chữ số cho nhau thì ta được một số mới lớn hơn số ban đầu 54 đơn vị => ba-ab=54
<=> b-a=4=> a+4=b
Thay vào giải ra vô nghiệm
Gọi số cần tìm là ab (0<a,b<10; a,b \(\in Z\))
Vì tổng các bình phương của hai chữ số bằng 26=> a^2 + b^2 = 26 (1)
Nếu đổi chỗ 2 chữ số cho nhau ta được số mới lớn hơn số ban đầu 36 đv nên có:
ba - ab =36
<=> 10b+a-10a-b=36
<=> 9b-9a=36
<=> b-a=4
<=> a = b+4 thay vào (1) có: (b+4)^2 + b^2 = 26 <=> b^2 +8b+16+b^2=26 <=> b^2 +4b-5=0 <=> (b-1)(b+5)=0 <=> b=1 (thỏa mãn) hoặc b= -5 (loại)
b=1=> a = 5
Vậy số cần tìm là 51
chỗ kia mình nhầm chút nhé, a = b-4 thay vào (1) ta tìm được b=-1(loại), b=5(thỏa mãn) => a= 1
Số cần tìm phải là 15
Gọi số cần tìm là \(\overline{ab}\)
Theo đề, ta có: b=3a và 10b+a-10a-b=18
=>3a-b=0 và -9a+9b=18
=>a=1 và b=3
Gọi 2 c số t nhiên đó là a, b (đk)
tổng các bình phương của hai chữ số bằng 5 ...=> \(a^2+b^2=5\) (*)
và nếu đổi chỗ hai chữ số cho nhau thì ta được một số mới lớn hơn số ban đầu 36 đơn vị => ba-ab=36
<=> b-a=4=> a+4=b
Thay vào giải ra vô nghiệm