cho tam giác ABC , gọi M,N lần lượt là trung điểm của AB,AC .Lấy D và F sao cho M,N lần lượt là trung điểm của CD và BE
a) chứng minh : AD =AE
b) chứng minh 3 điểm A ,D ,E thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cm tam giác AEM= tam giác ACN => góc EAM=gocsCAN (2 góc tương ứng )
rồi ta có góc DAE+DAN+CAN=180độ (do E,A,C thẳng hàng)
lại có gócEAM=goscCAN=>DAE+DAN+EAM=180độ =>góc MAN là góc bẹt=> M,A,N thẳng hàng
bạn tham khảo link mà mk đưa cho nhé
hoiap247.com/cau-hoi/82020
nhớ k cho mk nhé
Hình bạn tự vẽ nha :)
Xét \(\Delta ABE\) có : AE = AB => \(\Delta ABE\) cân tại A
=> \(\widehat{ABE}\) = \(\widehat{AEB}\)
\(\widehat{BAC}\) = \(\widehat{ABE}\) + \(\widehat{AEB}\) = \(2\widehat{ABE}\)
Xét \(\Delta ADC\) có AD = AC => \(\Delta ADC\) cân tại A
=> \(\Delta ADC\) = \(\Delta ACD\)
\(\widehat{BAC}\) = \(\widehat{ADC}\) + \(\widehat{ACD}\) = \(2\widehat{ADC}\)
Suy ra : \(\widehat{ABE}\) = \(\widehat{ADC}\) hay \(\widehat{DBE}\) = \(\widehat{BDC}\)
=> BE // CD
\(\Delta ABE\) cân tại A có M là trung điểm của BC nên AM \(\perp\)BE
\(\Delta ADC\) cân tại A có N là trung điểm của CD nên AN \(\perp\)CD
Do đó 3 điểm M , A , N thẳng hàng