K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2021

a) (2-\(\sqrt{3}\))(2+\(\sqrt{3}\))=22-(\(\sqrt{3}\))2=4-3=1 (ĐPCM)

16 tháng 4 2021

Câu a: Ta có:

(2−√3)(2+√3)=22−(√3)2=4−3=1(2−3)(2+3)=22−(3)2=4−3=1

Câu b: 

Ta tìm tích của hai số (√2006−√2005)(2006−2005) và (√2006+√2005)(2006+2005)

Ta có:

(√2006+√2005).(√2006−√2005)(2006+2005).(2006−2005)

= (√2006)2−(√2005)2(2006)2−(2005)2

=2006−2005=1=2006−2005=1

Do đó  (√2006+√2005).(√2006−√2005)=1(2006+2005).(2006−2005)=1

⇔√2006−√2005=1√2006+√2005⇔2006−2005=12006+2005

Vậy hai số trên là nghịch đảo của nhau.

14 tháng 4 2021

a) (\(\sqrt{3}\)-1)2=3-2\(\sqrt{3}\)+1= 4-2\(\sqrt{3}\) (ĐPCM)

b) \(\sqrt{4-2\sqrt{3}}\)=\(\sqrt{3}\)-1 >0

Bình phương 2 vế, ta có:

4-2\(\sqrt{3}\)=3-2\(\sqrt{3}\)+1= 4-2\(\sqrt{3}\) (ĐPCM)

21 tháng 5 2021

a)  \(\left(\sqrt{3}-1\right)^2\)=\(\left(\sqrt{3}\right)^2\)- 2\(\sqrt{3}\) +1= 3- 2\(\sqrt{3}\) +1=4-2\(\sqrt{3}\)

b)  \(\sqrt{4-2\sqrt{3}}-\sqrt{3}\) = \(\sqrt{\left(\sqrt{3}-1\right)^2}\) - \(\sqrt{3}\)\(|\sqrt{3}-1|\)-\(\sqrt{3}\)=\(\sqrt{3}\)-1-\(\sqrt{3}\)=-1

 

29 tháng 4 2021

a, \(\sqrt{\left(2x-1\right)^2}=3\Leftrightarrow\left|2x-1\right|=3\)

Với \(x\ge\frac{1}{2}\)pt có dạng : \(2x-1=3\Leftrightarrow x=2\)( tm )

Với \(x< \frac{1}{2}\)pt có dạng : \(-2x+1=3\Leftrightarrow x=-1\)( tm ) 

Vậy tập nghiệm của pt là S = { -1 ; 2 } 

b, \(\frac{5}{3}\sqrt{15x}-\sqrt{15x}-2=\frac{1}{3}\sqrt{15x}\)ĐK : \(x\ge0\)

\(\Leftrightarrow\frac{2}{3}\sqrt{15x}-2=\frac{1}{3}\sqrt{15x}\Leftrightarrow\frac{1}{3}\sqrt{15x}=2\)

\(\Leftrightarrow\sqrt{15x}=6\)bình phương 2 vế : \(\Leftrightarrow15x=36\Leftrightarrow x=\frac{36}{15}=\frac{12}{5}\)( tm ) 

Vậy tập nghiệm của pt là S = { 12/5 } 

17 tháng 5 2021
) √ ( 2 x − 1 ) 2 = 3 ⇒ | 2 x − 1 | = 3 ⇔ 2 x − 1 = ± 3 +) TH1: 2 x − 1 = 3 ⇒ 2 x = 4 ⇒ x = 2 +) TH2: 2 x − 1 = − 3 ⇒ 2 x = − 2 ⇒ x = − 1 Vậy x = − 1 ; x = 2 . b) Điều kiện: x ≥ 0 5 3 √ 15 x − √ 15 x − 2 = 1 3 √ 15 x ⇔ 5 3 √ 15 x − √ 15 x − 1 3 √ 15 x = 2 ⇔ ( 5 3 − 1 − 1 3 ) √ 15 x = 2 ⇔ 1 3 √ 15 x = 2 ⇔ √ 15 x = 6 ⇔ 15 x = 36 ⇔ x = 12 5 Vậy x = 12 5 .
23 tháng 5 2021

a) -17√3/3                                                  b) 11√6 

c) 21                                                            d) 11

29 tháng 5 2021

a)  a) Biến đổi vế trái thành 326+236−426 và làm tiếp.
b) Biến đổi vế trái thành (6x+136x+6x):6x và làm tiếp

28 tháng 5 2021

a) (a+1)(ba+1).
b) (x−y)(x+y).

19 tháng 6 2021

\(\dfrac{2+\sqrt{2}}{1+\sqrt{2}}=\dfrac{\left(2+\sqrt{2}\right)\left(\sqrt{2}-1\right)}{2-1}=2\sqrt{2}-2+2-\sqrt{2}=\sqrt{2}\)

\(\dfrac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}=\dfrac{\sqrt{5}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}=-\sqrt{5}\)

\(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}=\dfrac{\sqrt{6}\left(\sqrt{2}-1\right)}{2\left(\sqrt{2}-1\right)}=\dfrac{\sqrt{6}}{2}\)

\(\dfrac{a-\sqrt{a}}{1-\sqrt{a}}=\dfrac{\left(a-\sqrt{a}\right)\left(1+\sqrt{a}\right)}{1-a}=\dfrac{a+a\sqrt{a}-\sqrt{a}-a}{1-a}=\dfrac{\sqrt{a}\left(a-1\right)}{1-a}=-\sqrt{a}\)

\(\dfrac{p-2\sqrt{p}}{\sqrt{p}-2}=\dfrac{\sqrt{p}\left(\sqrt{p}-2\right)}{\sqrt{p}-2}=\sqrt{p}\)

28 tháng 5 2021

a) 2 \sqrt{6}, \sqrt{29}, 4 \sqrt{2}, 3 \sqrt{5} ;

b) \sqrt{38}, 2 \sqrt{14}, 3 \sqrt{7}, 6 \sqrt{2}

19 tháng 6 2021

a) \(2\sqrt{6}< \sqrt{29}< 4\sqrt{2}< 3\sqrt{5}\)

b) \(\sqrt{38}< 2\sqrt{14}< 3\sqrt{7}< 6\sqrt{2}\)

19 tháng 4 2021

a, Ta có  \(\sqrt{25-16}=\sqrt{9}=3\)

\(\sqrt{25}-\sqrt{16}=5-4=1\)

Do 3 > 1 nên \(\sqrt{25-16}>\sqrt{25}-\sqrt{16}\)

13 tháng 5 2021

a) căn 25 - 16  > căn 25 - căn 16

 

b)Với a>b>0 nên  \sqrt{a},\sqrt{b},\sqrt{a-b} đều xác định

 

Để so sánh \sqrt{a}-\sqrt{b} và \sqrt{a-b} ta quy về so sánh \sqrt{a} và \sqrt{a-b}+\sqrt{b}.

 

+) (\sqrt{a})^2=a.

                                       

+) (\sqrt{a-b}+\sqrt{b})^2=(\sqrt{a-b})^2+2\sqrt{a-b}.\sqrt{b}+(\sqrt{b})^2=a-b+b+2\sqrt{a-b}.\sqrt{b}=a+2\sqrt{a-b}.\sqrt{b}

.

Do a>b>0 nên 2\sqrt{a-b}.\sqrt{b}>0

 

 

\Rightarrow a+2\sqrt{a-b}.\sqrt{b}>a

 

\Rightarrow (\sqrt{a-b}+\sqrt{b})^2>(\sqrt{a})^2

 

Do \sqrt{a},\sqrt{a-b}+\sqrt{b}>0 

 

\Rightarrow \sqrt{a-b}+\sqrt{b}>\sqrt{a}

 

\Leftrightarrow \sqrt{a-b}>\sqrt{a}-\sqrt{b} (đpcm)

 

Vậy \sqrt{a-b}>\sqrt{a}-\sqrt{b}.

16 tháng 4 2021

a) Ta có: 

+)√25+9=√34+)25+9=34.

+)√25+√9=√52+√32=5+3+)25+9=52+32=5+3

=8=√82=√64=8=82=64.

Vì 34<6434<64 nên √34<√6434<64

Vậy √25+9<√25+√925+9<25+9

b) Với a>0,b>0a>0,b>0, ta có

+)(√a+b)2=a+b+)(a+b)2=a+b.

+)(√a+√b)2=(√a)2+2√a.√b+(√b)2+)(a+b)2=(a)2+2a.b+(b)2

 =a+2√ab+b=a+2ab+b

 =(a+b)+2√ab=(a+b)+2ab. 

Vì a>0, b>0a>0, b>0 nên √ab>0⇔2√ab>0ab>0⇔2ab>0

⇔(a+b)+2√ab>a+b⇔(a+b)+2ab>a+b

⇔(√a+√b)2>(√a+b)2⇔(a+b)2>(a+b)2

⇔√a+√b>√a+b⇔a+b>a+b (đpcm)

17 tháng 4 2021

a, Ta có : \(\sqrt{25+9}=\sqrt{34}\)

\(\sqrt{25}+\sqrt{9}=5+3=8=\sqrt{64}\)

mà 34 < 64 hay \(\sqrt{25+9}< \sqrt{25}+\sqrt{9}\)

b, \(\sqrt{a+b}< \sqrt{a}+\sqrt{b}\)

bình phương 2 vế ta được : \(a+b< a+2\sqrt{ab}+b\)

\(\Leftrightarrow2\sqrt{ab}>0\)vì \(a;b>0\)nên đẳng thức này luôn đúng )

Vậy ta có đpcm 

29 tháng 4 2021

a, \(ab+b\sqrt{a}+\sqrt{a}+1=\sqrt{a}b\left(\sqrt{a}+1\right)+\sqrt{a}+1\)

\(=\left(b\sqrt{a}+1\right)\left(\sqrt{a}+1\right)\)

b, \(\sqrt{x^3}-\sqrt{y^3}+\sqrt{x^2y}-\sqrt{xy^2}\)

\(=\sqrt{x^2}\left(\sqrt{x}+\sqrt{y}\right)-\sqrt{y^2}\left(\sqrt{y}+\sqrt{x}\right)=\left(\left|x\right|-\left|y\right|\right)\left(\sqrt{x}+\sqrt{y}\right)\)

28 tháng 5 2021

a) (a+1)(ba+1).
b) (x−y)(x+y)

16 tháng 4 2021

a)  Ta có:

4>3⇔√4>√3⇔2>√3⇔2.2>2.√3⇔4>2√34>3⇔4>3⇔2>3⇔2.2>2.3⇔4>23

Cách khác:

Ta có:  

⎧⎨⎩42=16(2√3)2=22.(√3)2=4.3=12{42=16(23)2=22.(3)2=4.3=12

Vì 16>12⇔√16>√1216>12⇔16>12

Hay 4>2√34>23.

b) Vì 5>4⇔√5>√45>4⇔5>4

⇔√5>2⇔5>2   

⇔−√5<−2⇔−5<−2 (Nhân cả hai vế bất phương trình trên với −1−1)

Vậy −√5<−2−5<−2.


 

17 tháng 4 2021

a, Ta có : \(4=\sqrt{16}\)\(2\sqrt{3}=\sqrt{4.3}=\sqrt{12}\)

Do 12 < 16 hay \(2\sqrt{3}< 4\)

b, Ta có : \(-2=-\sqrt{4}\)

Do \(4< 5\Rightarrow\sqrt{4}< \sqrt{5}\Rightarrow-\sqrt{4}>-\sqrt{5}\)

Vậy \(-2>-\sqrt{5}\)