CMR: 22225555 + 55552222 chia hết cho 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có :
10a + 11 = 2.5a + 25 - 14
= 2.5a + 5.5 - 14
= 5.(2a + 5) - 14
Mà 2a + 5 chia hết cho 7
đồng thời 14 cũng chia hết cho 7
=> 10a + 11 chia hết cho 7
a/ Ta có:\(2a+5⋮7\Leftrightarrow10a+25⋮7\)
\(\Leftrightarrow10a+25-14⋮7\)(vì \(14⋮7\)và \(10a+25⋮7\))
\(\Leftrightarrow10a+11⋮7\)(đpcm)
b/ Ta có:\(a+5b⋮3\Leftrightarrow5a+25b⋮3\)
\(\Leftrightarrow5a+25b-24b⋮3\)(vì \(24b⋮3\)và \(5a+25b⋮3\))
\(\Leftrightarrow5a+b⋮3\)(đpcm)
nhớ kich nếu bạn thấy đây là một lời giải đúng :)
Bài 1:
$5a+8b\vdots 3$
$\Leftrightarrow 5a+8b-3(2b+2a)\vdots 3$
$\Leftrightarrow 5a+8b-6b-6a\vdots 3$
$\Leftrightarrow 2b-a\vdots 3$
Ta có đpcm.
Bài 2. Bổ sung thêm điều kiện $n$ là số tự nhiên.
Ta có: $A=n(2n+7)(7n+7)=7n(2n+7)(n+1)$
Vì $n,n+1$ là 2 số tự nhiên liên tiếp nên sẽ tồn tại 1 số chẵn và 1 số lẻ
$\Rightarrow n(n+1)\vdots 2$
$\Rightarrow A=7n(n+1)(2n+7)\vdots 2(1)$
Mặt khác:
Nếu $n\vdots 3$ thì $A=7n(n+1)(2n+7)\vdots 3$
Nếu $n$ chia $3$ dư $1$ thì $2n+7$ chia hết cho $3$
$\Rightarrow A\vdots 3$
Nếu $n$ chia $3$ dư $2$ thì $n+1$ chia hết cho $3$
$\Rightarrow A\vdots 3$
Tóm lại $A\vdots 3(2)$
Từ $(1);(2)$ mà $(2,3)=1$ nên $A\vdots (2.3)$ hay $A\vdots 6$
a, ab + ba= ( 10a +b )+ (10b+a ) = 11a + 11b= 11(a+b) chia hết cho 11
Vậy ab+ba chia hết cho 11
b, ab - ba = (10a + 10b ) + ( 10b + a ) = 9a+9b= 9 (a+b) chia hết cho 9
Vậy ab - ba chia hết cho9
7777 mũ 7777 chia hết cho 7
Xl bn nhưng mk k hỉu lém