các đường phân giác các góc ngoài tại đỉnh B và C của tam giác ABC cát nhau ở K đường thẳng vuông góc với AK tại K cắt các đường thẳng AB , AC .theo thứ tự ở D và E . C/M:
a, DBKđồng dạng KEC
b, DE^2 = 4BD.CE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: AE là tia phân giác góc trong tại đỉnh A
AF là tia phân giác góc ngoài tại đỉnh A
Suy ra: AE ⊥ AF (tính chất hai góc kề bù)
Vậy AE ⊥ DF.
Ta có: BF là tia phân giác góc trong tại đỉnh B
BE là tia phân giác góc ngoài tại đỉnh B
Suy ra: BF ⊥ BE (tính chất hai góc kề bù)
Vậy BF ⊥ ED.
Lại có: CD là đường phân giác góc ngoài tại C
CE là đường phân giác góc trong tại C
Suy ra: CD ⊥ CE (tính chất hai góc kề bù)
Vậy CD ⊥ EF.
Vậy các đường thẳng EA; FB; DC là các đường cao trong tam giác DEF.
Ta có: EH = EK (chứng minh trên)
Suy ra: E thuộc tia phân giác của ∠(BAC).
Mà E khác A nên AE là tia phân giác của ∠(BAC)
Lời giải:
a) Thứ tự tam của tam giác đồng dạng bị sai. Phải là $\triangle DBK\sim \triangle EKC$
Ta có $K$ là giao 2 tia phân giác ngoài góc $B,C$ của tam giác $ABC$ nên $AK$ là tia phân giác trong góc $A$
Tam giác $ADE$ có $AK$ vừa là tia phân giác vừa là đường cao nên là tam giác cân
$\Rightarrow \widehat{ADK}=\widehat{AEK}$ hay $\widehat{BDK}=\widehat{KEC}(1)$
Mặt khác:
$\widehat{CKE}=90^0-\widehat{AKC}=90^0-(180^0-\widehat{KAC}-\widehat{ACK})=\widehat{KAC}+\widehat{ACK}-90^0$
$=\frac{\widehat{A}}{2}+\widehat{C}{2}+\frac{\widehat{A}+\widehat{B}}{2}-90^0$
$=\frac{2\widehat{A}+\widehat{B}+2\widehat{C}-180^0}{2}=\frac{\widehat{A}+\widehat{C}}{2}=\widehat{KBD}(2)$
Từ $(1);(2)$ suy ra $\triangle DBK\sim \triangle EKC$ (g.g)
b)
Từ kết quả tam giác đồng dạng phần a
$\Rightarrow \frac{DK}{EC}=\frac{DB}{EK}$
$\Rightarrow DK.EK=EC.DB$
$\Leftrightarrow \frac{DE}{2}.\frac{DE}{2}=BD.CE$
$\Leftrightarrow DE^2=4BD.CE$ (đpcm)
Hình vẽ: