Cho hình bình hành ABCD, O là giao điểm của hai đường chéo. Gọi M, N lần lượt là trung điểm OB, OD
a) Chứng minh AMCN là hình bình hành
b) Hình bình hành ABCD cần có thêm điều kiện gì để AMCN là hình chữ nhật
c) AN cắt CD tại E, CM cắt AB tại tâm O. Chứng minh rằng E và F đối xứng với nhau qua tâm O
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì ABCD là HBH nên:
*OB=OD từ đó BM=OM=ON=BN => ON=OM (1)
*OA=OC (2)
Từ 1,2 => AMCN là HBH ( 2 đường chéo cắt nhau tại trung điểm mỗi đường)^^
b) Để AMCN là hình thoi, phải có AC vuông góc với MN
Suy ra tứ giác ABCD phải là hình thoi (2 đường chéo vuông góc)^^
vẽ CH vuông góc BN,CK vuông góc DM
Tam giác COK=Tam giác COH(ch-gn)
=> CK=CH
S_NBC=CH.BN/2,S_MDC=CK.DM/2,S_NBC=S_MDC(=S_DBC)
=>BN=DM
a: Xét tứ giác AMCN có
AM//CN
AM=CN
Do đó: AMCN là hình bình hành
b: ABCDlà hình bình hành
nên AC cắt BD tại trung điểm của mỗi đường
=>O là trung điểm của AC
AMCN là hình bình hành
nên AC cắt MN tại trung điểm của mỗi đường
=>M đối xứng N qua O
a, Vì O là giao điểm 2 đg chéo của hbh ABCD nên \(OB=OD\)
Mà M,N là trung điểm OB,OD nên \(OM=ON\)
Mà O là giao điểm 2 đg chéo của hbh ABCD nên \(OA=OC\)
Do đó AMCN là hbh (do O là trung điểm AC và MN)
b, Vì AMCN là hbh nên AN//CM hay AE//CF
Mà ABCD là hbh nên AD//BC hay AF//CE
Do đó AECF là hbh nên \(AE=CF\)
Do AECF là hbh mà O là trung điểm AC nên cũng là trung điểm EF
Vậy O;E;F thẳng hàng
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của BC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//AC và MN=AC/2(1)
Xét ΔADC có
Q là trung điểm của AD
P là trung điểm của CD
Do đó: QP là đường trung bình của ΔADC
Suy ra: QP//AC và QP=AC/2(2)
Từ (1) và (2) suy ra MN//PQ và MN=PQ
hay MNPQ là hình bình hành
cái lon cc