giả sử các số hữu tỉ x,y thoả mãn x^5+y^5=2x^2*y^2. chứng minh 1-xy là bình phương 1 số hữu tỉ
nhanh nha các bạn ơi mình cho bạn 3 tick mình cần gấp nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Hoàng Anh Trần - Toán lớp 9 - Học toán với OnlineMath
Em có thể tham khảo tại đây nhé. Chỉ cần thêm kết luận \(\sqrt{1-xy}\in Q\) nên 1 - xy là bình phương của số hữu tỉ.
* Xét y = 0 thì x = 0 => 1 - xy = 1 (là bình phương của một số hữu tỉ)
* Xét y \(\ne\)0 thì chia hai vế của giả thiết cho y4, ta được: \(\frac{x^5}{y^4}+y=\frac{2x^2}{y^2}\Rightarrow\frac{x^6}{y^4}+xy=\frac{2x^3}{y^2}\Rightarrow1-xy=\frac{x^6}{y^4}-\frac{2x^3}{y^2}+1=\left(\frac{x^3}{y^2}-1\right)^2\)(là bình phương của một số hữu tỉ)
Vậy 1 - xy là bình phương của một số hữu tỉ (đpcm)
ta có
\(\frac{1-2x}{1-x}+\frac{1-2y}{1-y}=1\Leftrightarrow\left(1-2x\right)\left(1-y\right)+\left(1-2y\right)\left(1-x\right)=\left(1-x\right)\left(1-y\right)\)
\(\Leftrightarrow1-2\left(x+y\right)+3xy=0\)
Vậy \(M=x^2+y^2-xy+\left(1-2\left(x+y\right)+3xy\right)=\left(x+y+1\right)^2\)
vậy ta có đpcm
Ta chứng minh \(t=\sqrt{m}=\sqrt{1-\frac{1}{xy}}\) là số hữu tỉ.
Ta có \(t=\sqrt{1-\frac{1}{xy}}=\frac{\sqrt{xy-1}}{\sqrt{xy}}=\frac{\sqrt{xy-1}.\sqrt{xy}.x^2y^2}{\sqrt{xy}.\sqrt{xy}.x^2y^2}\)
\(=\frac{\sqrt{x^6y^6-x^5y^5}}{x^3y^3}=\frac{\sqrt{\left(x^3y^3\right)^2-x^5y^5}}{x^3y^3}\)
Lại có: \(x^5+y^5=2x^3y^3\Rightarrow x^3y^3=\frac{x^5+y^5}{2}\)
Vậy nên \(t=\frac{\sqrt{\left(\frac{x^5+y^5}{2}\right)^2-x^5y^5}}{x^3y^3}=\frac{\sqrt{\left(\frac{x^5-y^5}{2}\right)^2}}{x^3y^3}=\frac{\left|x^5-y^5\right|}{2x^3y^3}=\frac{\left|x^5-y^5\right|}{x^5+y^5}\)
Do x, y hữu tỉ nên \(\frac{\left|x^5-y^5\right|}{x^5+y^5}\in Q\)
Vậy m là bình phương một số hữu tỉ (đpcm).
\(\frac{1-2x}{1-x}=1\)
\(\Leftrightarrow1-x=1-2x\)
\(\Leftrightarrow-x+2x=1-1\)
\(\Leftrightarrow x=0\)
Tương tự ta cũng có \(y=0\)
Khi đó : \(x^2+y^2-xy=0^2+0^2-0\cdot0=0=0^2\left(đpcm\right)\)
Với y = 0 thi 1 - xy = 0 là bình phương của số hữu tỷ
Với y \(\ne0\)thì ta chia 2 vế cho y4 thì được
\(\frac{x^5}{y^4}+y=2\frac{x^2}{y^2}\)
\(\Leftrightarrow-y=\frac{x^5}{y^4}-2\frac{x^2}{y^2}\)
\(\Leftrightarrow-xy=\frac{x^6}{y^4}-2\frac{x^3}{y^2}\)
\(\Leftrightarrow\Leftrightarrow1-xy=\frac{x^6}{y^4}-2\frac{x^3}{y^2}+1=\left(\frac{x^3}{y^2}-1\right)^2\)
Vậy 1 - xy là bình phương của 1 số hữu tỷ