K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2020

A=(2+2²+2³+2⁴)+(25+26+27+28)...+(217+218+219+220)

=2(1+2+4+8)+25(1+2+4+8)+...+217(1+2+4+8)

=15(2+25+29+...+217)

=30.(1+2⁴+28+...+216) chia hết cho 10

=> A có tận cùng là 0

27 tháng 2 2020

b) Có a-5b chia hết cho 17

=> 10(a-5b) chia hết cho 17.

=> 10a-50b chia hết cho 17.

Mà 51b= 17×3b chia hết cho 17

=> 10a-50b+51b chia hết cho 17

=> 10a+b chia hết cho 17

17 tháng 2 2015

huk mìk như pn thuj có 6 đề hsg đây nè

18 tháng 2 2015

Mình giải đc r ^^ 

2 tháng 9 2018

\(4a^2+3ab-11b^2\)

\(=4a^2+4ab-11ab+10ab-11b^2\)

\(=\left(4a^2+4ab\right)-\left(11ab-11b^2\right)+10ab\)

\(=4a\left(a+b\right)-11b\left(a+b\right)+10ab\)\(=\left(4a-11b\right)\left(a+b\right)+10ab⋮5\)

Vì \(10ab⋮5\Rightarrow\left(4a-11b\right)\left(a+b\right)⋮5\)

Tiếp tục xét 2 trường hợp:

\(4a-11b⋮5\)và \(a+b⋮5\) nhé

15 tháng 4 2015

4a2+3ab-11bchia hết cho 5  \(\left(5a^2+5ab-10b^2\right)-\left(4a^2+3ab-11b^2\right)\) chia hết cho 5

                                             a+ 2ab + b2 chia hết cho 5

                                            ( a + b )2 chia hết cho 5

                                             a + b chia hết cho 5  (vì 5 là số nguyên tố)

                                             a4 - b= a+ b (a + b) (a - b) chia hết cho 5

DD
3 tháng 8 2021

4a2+3ab-11bchia hết cho 5 

\(\left(4a^2+3ab-11b^2\right)⋮5\)

\(\Leftrightarrow5\left(a^2+ab-2b^2\right)-\left(4a^2+3ab-11b^2\right)⋮5\)

\(\Leftrightarrow\left(a^2+2ab+b^2\right)⋮5\)

\(\Leftrightarrow a+b⋮5\)

\(\Rightarrow a^4-b^4=\left(a-b\right)\left(a+b\right)\left(a^2+b^2\right)⋮5\)

Giả sử: abc¯¯¯¯¯¯¯+(2a+3b+c)abc¯+(2a+3b+c)chia hết cho7, ta có:

abc¯¯¯¯¯¯¯+(2a+3b+c)=a.100+b.10+c+2a+3b+c=a.98+7.babc¯+(2a+3b+c)=a.100+b.10+c+2a+3b+c=a.98+7.b

Vì a.98a.98 chia hết cho 7(98 chia hết cho 7)7.b7.b chia hết cho 7 ⇒a.98+b.7⇒a.98+b.7 chia hết cho 7

⇒abc¯¯¯¯¯¯¯+(2a+3b+c)⇒abc¯+(2a+3b+c)chia hết cho 7

Mà theo đầu đề bài abc¯¯¯¯¯¯¯abc¯chia hết cho 7 => 2a+3b+c chia hết cho 7

14 tháng 2 2020

Ta có : 2a+3b\(⋮\)7

\(\Rightarrow\)4(2a+3b)\(⋮\)7

\(\Rightarrow\)8a+12b\(⋮\)7

\(\Rightarrow\)8a+5b+7b\(⋮\)7

Vì 7b\(⋮\)7

\(\Rightarrow\)8a+5b\(⋮\)7

Vậy 8a+5b\(⋮\)7.