Câu1: nếu cùng cộng mẫu vào tử và vào mẫu của phân số thì giá trị của phân số tăng lên 2 lần
Câu 2: nếu lấy mẫu trừ đi tử của phân số thì phân số đó tăng lên 10 lần
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi phân số đó là \(\frac{a}{b}\) (a, b là số tự nhiên), ta có :
\(\frac{a}{b}\times3=\frac{a+b}{b+b}\)
\(\Rightarrow\frac{3a}{b}=\frac{a+b}{2b}\)
Nhân cả tử và mẫu cho 2 ta có:
\(\frac{2\times3a}{2\times b}=\frac{a+b}{2b}\)
\(\Rightarrow\frac{6a}{2b}=\frac{a+b}{2b}\)
\(\Rightarrow6a=a+b\)
\(6a-a=b\)
\(5a=b\)
Vậy \(\frac{a}{b}=\frac{1}{5}\)
(Lưu ý: \(3a=3\times a\))
Lời giải:
Gọi phân số cần tìm là $\frac{a}{b}$. Theo bài ra ta có:
$\frac{a+b}{b}=8\times \frac{a}{b}$
$\frac{a}{b}+1=8\times \frac{a}{b}$
$1=8\times \frac{a}{b}-\frac{a}{b}=7\times \frac{a}{b}$
$\frac{a}{b}=\frac{1}{7}$
$\Rightarrow b=7; a=1$