Giúp mình với giải bài toán này nhanh và giải thật kĩ hộ mình với :
Tìm n để M=(10n+25)/(2n+4) là số nguyên.
Bạn nào giải được thì cảm ơn rất nhiều nhé.
Thanks
>_< >_<
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
chưa đủ bạn ơi còn nhiều số nữa hãy gắng suy nghĩ giúp mình đi
\(\Rightarrow x\left(2y+1\right)-3\left(2y+1\right)=7\)
\(\Leftrightarrow\left(x-3\right)\left(2y+1\right)=7=1.7=7.1=-1.-7=-7.-1\)
x-3 | -7 | -1 | 1 | 7 |
2y+1 | -1 | -7 | 7 | 1 |
x | -4 | 2 | 4 | 10 |
y | -1 | -4 | 3 | 0 |
vậy....
a: \(\left|\overrightarrow{AB}-\overrightarrow{AC}\right|=\left|\overrightarrow{CB}\right|=10a\)
b: \(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=\dfrac{BC}{2}=5a\)
\(M=\dfrac{10n+25}{2n+4}=\dfrac{5\left(2n+5\right)}{2n+4}=5\cdot\dfrac{2n+4}{2n+4}+\dfrac{1}{2n+4}\)
để M ∈ Z
=> \(2n+4\inƯ\left\{1\right\}=\left\{-1;1\right\}\)
\(=>\left\{{}\begin{matrix}2n+4=1\\2n+4=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2n=-3\\2n=-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}n=-\dfrac{3}{2}\\n=-\dfrac{5}{2}\end{matrix}\right.\) thì M ∈Z