cho p = 3+6+9+12 +... +108 chứng minh rằng p là bội của 9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 3 + 6 + 9 + ...... + 108
A = ( 3 + 6 + 9 ) + ......... + ( 102 + 105 + 108 )
A = 18 + ....... + 405
Mà \(18⋮9;405⋮\) 9 nên A \(⋮\) 9 ( đpcm )
Bài 1: abba = aca . 11 => abba luôn chia hết cho 11
Bài 2: ab - ba = 10a + b - 10b + a = 9a - 9b = 9(a-b) => chúng là bội của 9
Bài 3:
410 + 411 +412 + 413 + ... + 4198 + 4199
= (40 + 41) . 411 + (40 + 41) . 413 + ... + (40 + 41) . 4199
= (4 + 1) . 411 + (4 + 1) . 413 + ... + (4 + 1) . 4199
= 5 . 411 + 5 . 413 + ... + 5 . 4199
= 5 . (411 + 413 + ... + 4199) => M chia hết cho 5
Vậy M là bội của 5
10^n-4=10...0-4 (n số 0)
=999...96 (n-1 số 9)
Vì 999...96 có tổng các chữ số là 9n+6=3(3n+2) chia hết cho 3 nên 10^n-4 chia hết cho 3.
b/9^2n+1-14=9^2n.9-14=81^n.9-14=A1.9-14=A9-14=B5 chia hết cho 5. Vậy 9^2n+1 -14 chia hết cho 5
câu 2 nè:
=92n*9-14
=...1*9-4-10
=...9 -4 -10
=...5-10
=...5 chia hết cho 5
moi a thuoc Z, ta cho A = {-1;0;1}
a) {(-1)-1}*{(-1)+2}+12 = 10 k la boi cua 9
( 0 - 1 ) * ( 0+2)+12=10 k la boi cua 9
(1-1) * ( 1 + 2 ) + 12 = 12 k la boi cua 9
b){ ( -1) + 2 } * { ( -1 + 9 } + 21 = 29 k la boi cua 49
(0+2)*(0+9)+21=39 k la boi cua 49
(1+2)*(1+9)+21=51 k la boi cua 49
nho chon cau tra loi cua mik nha
Bài a. Giả sử có số nguyên a đề (a-1)(a+2) +12 là bội của 9
Khi đó (a-1)(a+2) +12 = a2 + a + 10 = a2 + a + 1 + 9 chia hết cho 9
Hay a2 + a + 1 = 9k suy ra 4a2 + 4a + 4 = 36k
(2a+1)2 = 36k - 3 = 3 (12k - 1)
suy ra 12k - 1 chia hết cho 3 (vô lý)
Vậy.....không là bội của 9
b) Đặt $A=$ $(a-1).(a+2) +12$
$ = a^2+2a-a-2+12$
$ = a^2+a+10$
$ = a^2+a+1+9$
Giả sử $ A \vdots 9$
$\to a^2+a+1+9 \vdots 9$
$\to a^2+a+1 \vdots 9$
$\to 4a^2+4a+4 \vdots 9$ hay : $a^2+4a+4 \vdots 3$
$\to (2a+1)^2 + 3 \vdots 3$
$\to (2a+1)^2 \vdots 3 \to 2a+1 \vdots 3$
Mà $3$ là số nguyên tố nên :
$(2a+1)^2 \vdots 9$
Do đó : $(2a+1)^2 + 3 \not \vdots 9$
Từ đs suy ra $A$ không là bội của $9$.
Câu b) em làm tương tự em tách thành chia hết cho $7$ vì $7$ là số nguyên tố.
a) Trường hợp 1: a=3k(k∈N)
Suy ra: \(\left(a-1\right)\left(a+2\right)+12=\left(3k-1\right)\left(3k+2\right)+12\)
Vì 3k+1 và 3k+2 không chia hết cho 3 nên \(\left(3k-1\right)\left(3k+2\right)+12⋮̸3\)
\(\Leftrightarrow\left(3k-1\right)\left(3k+2\right)+12⋮̸9\)(1)
Trường hợp 2: a=3k+1(k∈N)
Suy ra: \(\left(a-1\right)\left(a+2\right)+12=\left(3k+1-1\right)\cdot\left(3k+1+2\right)+12\)
\(=3k\cdot\left(3k+3\right)+12\)
\(=9k^2+9k+12⋮̸9\)(2)
Trường hợp 3: a=3k+2(k∈N)
Suy ra: \(\left(a-1\right)\left(a+2\right)+12=\left(3k+2-1\right)\left(3k+2+2\right)+12\)
\(=\left(3k+1\right)\left(3k+4\right)+12⋮̸9\)(3)
Từ (1), (2) và (3) suy ra ĐPCM