Cho 2 đường tròn đồng tâm, tâm O bán kính R và tâm O bán kính R' (R>R'). Điểm M nằm ngoài 2 đường tròn. Vẽ MA là tiếp tuyến của đường tròn tâm O bán kính R. MB là tiếp tuyến của đường tròn tâm O bán kính R'. Chứng minh rằng đường trung trực của đoạn thẳng AB đi qua trung điểm của OM
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tứ giác MAOB có:
\(\widehat{MAO}+\widehat{MBO}=90^o+90^o=180^o\) (MA,MB là tiếp tuyến)
=> Tứ giác MAOB nội tiếp (dhnb)
b) Tam giác CAD vuông tại C (tiếp tuyến tại C) và có BC là đường cao (góc ABC nội tiếp chắn nửa đường tròn)
\(\Rightarrow AC^2=AB.AD\) (hệ thức lượng) (1)
Có: \(AC^2=\left(2R\right)^2=4R^2\) (2)
Từ (1) và (2) suy ra \(AB.AD=4R^2\)
a) Xét tứ giác MAOB có
\(\widehat{OAM}\) và \(\widehat{OBM}\) là hai góc đối
\(\widehat{OAM}+\widehat{OBM}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: MAOB là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
b) Xét (O) có
ΔABC nội tiếp đường tròn(A,C,B∈(O))
AC là đường kính(gt)
Do đó: ΔABC vuông tại B(Định lí)
⇔CB⊥AB tại B
⇔CB⊥AD tại B
Áp dụng hệ thức lượng trong tam giác vuông vào ΔADC vuông tại C có CB là đường cao ứng với cạnh huyền AD, ta được:
\(AB\cdot AD=AC^2\)
\(\Leftrightarrow AB\cdot AC=\left(2\cdot R\right)^2=4R^2\)(đpcm)
LƯU Ý
Các bạn học sinh KHÔNG ĐƯỢC đăng các câu hỏi không liên quan đến Toán, hoặc các bài toán linh tinh gây nhiễu diễn đàn. Online Math có thể áp dụng các biện pháp như trừ điểm, thậm chí khóa vĩnh viễn tài khoản của bạn nếu vi phạm nội quy nhiều lần.
Chuyên mục Giúp tôi giải toán dành cho những bạn gặp bài toán khó hoặc có bài toán hay muốn chia sẻ. Bởi vậy các bạn học sinh chú ý không nên gửi bài linh tinh, không được có các hành vi nhằm gian lận điểm hỏi đáp như tạo câu hỏi và tự trả lời rồi chọn đúng.
Mỗi thành viên được gửi tối đa 5 câu hỏi trong 1 ngày
Các câu hỏi không liên quan đến toán lớp 1 - 9 các bạn có thể gửi lên trang web h.vn để được giải đáp tốt hơn.