Cho x, y không âm và x+y ≤1. Tìm GTLN của \(A=\sqrt{1+4x^2}+\sqrt{1+4y^2}+3\sqrt{x}+3\sqrt{y}\)
Mọi người giúp em với, xin cảm ơn ạ.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{4x+2\sqrt{x}+1}\le\sqrt{4x+\dfrac{1}{2}\left(2^2+x\right)+1}=\sqrt{\dfrac{9x}{2}+3}\)
\(=\dfrac{1}{\sqrt{21}}.\sqrt{21}.\sqrt{\dfrac{9x}{2}+3}\le\dfrac{1}{2\sqrt{21}}\left(21+\dfrac{9x}{2}+3\right)=\dfrac{1}{2\sqrt{21}}\left(\dfrac{9x}{2}+24\right)\)
Tương tự và cộng lại:
\(A\le\dfrac{1}{2\sqrt{21}}\left(\dfrac{9}{2}\left(x+y+z\right)+72\right)=3\sqrt{21}\)
\(A_{max}=3\sqrt{21}\) khi \(x=y=z=4\)
\(A=1\sqrt{4x+2\sqrt{x}+1}+1.\sqrt{4y+2\sqrt{y}+1}+1\sqrt{4z+2\sqrt{z}+1}\)
\(\le\sqrt{\left(1+1+1\right)\left(4\left(x+y+z\right)+2\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)+3\right)}\)
\(=\sqrt{3.\left[51+\dfrac{4\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)}{2}\right]}\)
\(\le\sqrt{3.\left[51+\dfrac{x+y+z+12}{2}\right]}\)
\(=\sqrt{189}\)
Dấu "=" xảy ra <=> x = y = z = 4
\(1)\) Ta có :
\(M=\sqrt{x^2+2x+1}+\sqrt{x^2-2x+1}\)
\(M=\sqrt{\left(x+1\right)^2}+\sqrt{\left(x-1\right)^2}\)
\(M=\left|x+1\right|+\left|x-1\right|\)
\(M=\left|x+1\right|+\left|1-x\right|\ge\left|x+1+1-x\right|=\left|2\right|=2\)
Dấu "=" xảy ra khi và chỉ khi \(\left(x+1\right)\left(1-x\right)\ge0\)
Trường hợp 1 :
\(\hept{\begin{cases}x+1\ge0\\1-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-1\\x\le1\end{cases}\Leftrightarrow}-1\le x\le1}\)
Trường hợp 2 :
\(\hept{\begin{cases}x+1\le0\\1-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le-1\\x\ge1\end{cases}}}\) ( loại )
Vậy GTNN của \(M\) là \(2\) khi \(-1\le x\le1\)
Chúc bạn học tốt ~
b,ta co x^2+y^2=1
=>x^2=1-y^2
y^2=1-x^2
ta co
\(\sqrt{x^4+4\left(1-x^2\right)}\)+\(\sqrt{y^4+4\left(1-y^2\right)}\)
=\(\sqrt{\left(x^2-2\right)^2}\)+\(\sqrt{\left(y^2-2\right)^2}\)
còn lại bạn xét các trường hợp của x^2-2 và y^2-2 là ra
Theo đề bài, ta có:
\(x^3+y^3=x^2-xy+y^2\)
hay \(\left(x^2-xy+y^2\right)\left(x+y-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2-xy+y^2=0\\x+y=1\end{cases}}\)
+ Với \(x^2-xy+y^2=0\Rightarrow x=y=0\Rightarrow P=\frac{5}{2}\)
+ với \(x+y=1\Rightarrow0\le x,y\le1\Rightarrow P\le\frac{1+\sqrt{1}}{2+\sqrt{0}}+\frac{2+\sqrt{1}}{1+\sqrt{0}}=4\)
Dấu đẳng thức xảy ra <=> x=1;y=0 và \(P\ge\frac{1+\sqrt{0}}{2+\sqrt{1}}+\frac{2+\sqrt{0}}{1+\sqrt{1}}=\frac{4}{3}\)
Dấu đẳng thức xảy ra <=> x=0;y=1
Vậy max P=4 và min P =4/3
Coi như bước trên bạn đã làm đúng, giải pt vô tỉ thôi nhé:
TH1: \(x=y\)
\(\Rightarrow x^2+x+2=\sqrt{5x+5}+\sqrt{3x+2}\)
\(\Leftrightarrow x^2-x-1+\left(x+1-\sqrt{3x+2}\right)+\left(x+2-\sqrt{5x+5}\right)=0\)
\(\Leftrightarrow x^2-x-1+\dfrac{x^2-x-1}{x+1+\sqrt{3x+2}}+\dfrac{x^2-x-1}{x+2+\sqrt{5x+5}}=0\)
TH2: \(x=4y+3\)
Đây là trường hợp nghiệm ngoại lai, lẽ ra phải loại (khi bình phương lần 2 phương trình đầu, bạn quên điều kiện nên ko loại trường hợp này)
Dạ em cảm ơn thầy ạ, em ko nhìn ra cách chuyển thành x2 - x - 1 ạ @@