Một động cơ bắt đầu kéo thang máy có khối lượng 800kg chuyển động nhanh dần đều theo phương thẳng đứng lên trên.Lấy g=10m/s2.Sau khi bắt đầu chuyển động 4s,thang máy có tốc độ 2m/s.Tính công suất trung bình của động cơ kéo thang máy trong thời gian này.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi F là lực kéo của động cơ thang máy.
Ta có: F → + P → = m a → chọn chiều dương là chiều chuyển động ta có:
F – P = ma F = P + ma = m(g + a) = 1000( 10 + 2 ) = 12000N.
Trong 5s đầu, thang máy đi được:
h = a . t 2 2 = 2.5 2 2 = 25 ( m )
Vậy công của động cơ thang máy thực hiện trong 5s đầu là:
A = F . h = 300000J = 300kJ.
a, Ngoại lực tác dụng lên thang máy là trọng lực và kéo của động cơ thang máy. Áp dụng định lý về động năng ta có: Wđ1 – Wđ0 = A F 1 → + A P 1 →
Mà Wđ1 = m . v 1 2 2 , Wđ0 = m . v 0 2 2 = 0 ;
A P 1 → = − P . s 1 = − m . g . s 1 ( A P → 1 < 0 )
Vì thang máy đi lên
⇒ A F 1 = m . v 1 2 2 + m . g . s 1 = 1 2 .1000.5 2 + 1000.10.5 = 62500 J
b, Vì thang máy chuyển động đều, lực kéo của động cơ cân bằng với trọng lực P → : F 2 → + P → = 0 . Công phát động của động cơ có độ lớn bằng công cản A F 2 → = − A P → với A P = − P . s 2 = − m . g . s 2
=> AF2 = mgs2 do đó công suất của động cơ thang máy trên đoạn đường s2 là:
℘ 2 = A F 2 t = m . g . s 2 t = m . g . v 2 = m . g . v 1 ⇒ ℘ 2 = 1000.10.5 = 50000 ( W ) = 50 ( k W ) .
c, Ngoại lực tác dụng lên thang máy là trọng lực P → và lực kéo F 3 → của động cơ.
Áp dụng định lí động năng ta có: Wđ3 – Wđ2 = AF3 + Ap’
Mà Wđ3 = m . v 3 2 2 = 0 ; Wđ2 = m v 2 2 2 (v2 = v1 = 5m/s); Ap = - Ps3 = - mgs3
Công của động cơ trên đoạn đường s3 là: AF3 = mgs3 - m v 2 2 2 = 37500J
Áp dụng công thức tính công ta tìm được lực trung bình do động cơ tác dụng lên thang máy trên đoạn đường s3: F 3 ¯ = A F 3 s 3 = 37500 5 = 7500 N
Đáp án A
+ Tần số góc của con lắc lò xo ω = k m = 50 0 , 2 = 5 π rad/s → T = 0,4 s.
Khi thang máy chuyển động thẳng đều đi lên thì con lắc dao động quanh vị trí cân bằng O′ nằm dưới vị trí cân bằng O ban đầu của con lắc một đoạn Δ l = m a k = 0 , 2.4 50 = 1 , 6 cm và biên độ dao động A = Δl = 1,6 cm.
+ Ta để ý rằng, khoảng thời gian thang máy chuyển động Δt = 20T + 0,75T = 8,3 s → sau khoảng thời gian này con lắc sẽ đi qua vị trí cân bằng O′ → v = vmax = ωA′ = 8π cm/s.
+ Cho thang máy chuyển động thẳng đều, vật lại dao động quanh vị trí cân bằng O với biên độ: A ' = Δ l 2 + v m a x ω 2 = 1 , 6 2 + 8 π 5 π 2 = 1 , 6 2 ≈ 2 , 26 cm.
a) Khi thang máy đi lên đều, lực kéo của động cơ chính bằng trọng lượng của thang máy: F = P
Công của động cơ để kéo thang máy khi đi lên đều:
A = m.g.h = 800.10.10 = 80000J
b) Khi thang máy đi lên nhanh dần đều, theo định luật II – Niu tơn:
\(\overrightarrow{F}+\overrightarrow{P}=m.\overrightarrow{a}\)
Chiếu theo phương chuyển động:
F − P = ma => F = P + ma = m.(g + a)
=> F = 800.(10+1) = 8800N
Công của động cơ để kéo thang máy khi đi lên nhanh dần:
A = F.s = 8800.10 = 88000Jbạn giải dùm mình câu dưới nữa đi câu 1 vật có khối lượng 2kg đó
Đáp án B
Hướng dẫn:
Ta có thể quy bài toán con lắc lò xo trong thang máy chuyển động với gia tốc về trường hợp con lắc chịu tác dụng của trường lực ngoài F → = F q t → = − m a → .
Để đơn giản, ta có thể chia chuyển động của con lắc thành hai giai đoạn:
Giai đoạn 1: Thang máy chuyển động nhanh dần đều đi lên, con lắc dao động điều hòa quanh vị trí cân bằng mới O′.
Dưới tác dụng của lực quán tính ngược chiều với gia tốc, vị trí cân bằng mới O′ của con lắc nằm phía dưới vị trí cân bằng cũ O một đoạn O O ' = m a k = 0 , 4.4 100 = 1 , 6 cm.
+ Biến cố xảy ra không làm thay đổi tần số góc của dao động ω = k m = 100 0 , 4 = 5 π rad/s → T = 0,4 s.
Thời điểm thang máy bắt đầu chuyển động, vật ở biên trên, do vậy sau khoảng thời gian Δt = 12,5T = 5 s vật sẽ đến vị trí biên dưới, cách vị trí cân bằng cũ O một đoạn 2OO′ = 3,2 cm.
Giai đoạn 2: Thang máy chuyển động thẳng đều, con lắc dao động điều hòa quanh vị trí cân bằng O.
+ Thang máy chuyển động thẳng đều → a = 0, không còn lực quán tính nữa vị trí cân bằng bây giờ trở về O.
→ Con lắc sẽ dao đông với biên độ mới A′ = 2OO′ = 3,2 cm.
→ Thế năng đàn hồi của con lắc cực đại khi con lắc ở biên dưới, tại vị trí này lò xo giãn Δ l m a x = A ' + m g k = 3 , 2 + 0 , 4.10 100 = 7 , 2 cm.
+ Thế năng đàn hồi cực đại E d h m a x = 1 2 k Δ l m a x 2 = 1 2 .100 0 , 072 2 ≈ 0 , 26 J.
\(a=\dfrac{v}{t}=\dfrac{2}{4}=0,5m/s^2\)
\(s=\dfrac{1}{2}at^2=\dfrac{1}{2}.0,5.4^2=4m\)
\(F-P=ma\Rightarrow F=P+ma=m\left(g+a\right)=800.\left(10+0,5\right)=8400N\)
\(P=\dfrac{Fs}{t}=\dfrac{8400.4}{4}=8400W\)