K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2016

\(\frac{a+b}{a-b}=\frac{a+c}{c-a}\)

=> ( a + b ) ( c -a ) = ( a + c ) ( a - b )

=> a ( c - a ) + b ( c - a ) = a ( a - b ) + c ( a - b )

=> ac - aa + bc - ba       = aa - ab + ca - bc

=> - aa - aa                   =  - bc - bc

=> - 2 a 2                      = - 2 bc

=>     a 2                       = bc

Vậy \(\frac{a+b}{a-b}=\frac{a+c}{c-a}\)thì a 2 = bc

5 tháng 7 2017

Áp dụng BĐT Am-Gm ta được:

\(\dfrac{ab}{c}+\dfrac{bc}{a}\ge2\sqrt{\dfrac{ab^2c}{ca}}=2b^2\)

\(\dfrac{bc}{a}+\dfrac{ac}{b}\ge2\sqrt{\dfrac{abc^2}{ab}}=2c^2\)

\(\dfrac{ab}{c}+\dfrac{ac}{b}\ge2\sqrt{\dfrac{a^2bc}{bc}}=2a^2\)

\(\Rightarrow\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ac}{b}\ge a^2+b^2+c^2=1\)

Vậy giá trị nhỏ nhất của \(\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ac}{b}=1\)

15 tháng 11 2018

\(\dfrac{ab}{a+b}=\dfrac{bc}{b+c}=\dfrac{ca}{c+a}\)

\(\Leftrightarrow\dfrac{a+b}{ab}=\dfrac{b+c}{bc}=\dfrac{c+a}{ca}\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{b}+\dfrac{1}{c}\\\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{c}+\dfrac{1}{a}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{a}=\dfrac{1}{c}\\\dfrac{1}{b}=\dfrac{1}{a}\end{matrix}\right.\)

\(\Leftrightarrow a=b=c\)

\(\Rightarrow P=1\)

15 tháng 11 2018

ta có \(\left\{{}\begin{matrix}\dfrac{ab}{a+b}=\dfrac{ac}{a+c}\\\dfrac{ab}{a+b}=\dfrac{bc}{b+c}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a.\dfrac{b}{a+b}=a.\dfrac{c}{c+a}\\b.\dfrac{a}{a+b}=b.\dfrac{c}{b+c}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{b}{a+b}=\dfrac{c}{c+a}\\\dfrac{a}{a+b}=\dfrac{c}{b+c}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}1+\dfrac{b}{a}=1+\dfrac{c}{a}\\1+\dfrac{a}{b}=1+\dfrac{c}{b}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{b}{a}=\dfrac{c}{a}\\\dfrac{a}{b}=\dfrac{c}{b}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}b=c\\a=c\end{matrix}\right.\Rightarrow a=b=c\)

\(\Rightarrow P=\dfrac{ab^2+bc^2+ca^2}{a^3+b^3+c^3}=\dfrac{a^3+a^3+a^3}{a^3+a^3+a^3}=1\)

9 tháng 10 2019

Từ \(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\left(1\right)\)

\(c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\left(2\right)\)

\(d^2=ac\Rightarrow\frac{c}{d}=\frac{d}{a}\left(3\right)\)

Từ (1) (2) (3) \(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có : 

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\)

\(\Rightarrow a=b=c=d\)

Khi đó M = \(\frac{a}{b+c+d}+\frac{b}{a+c+d}=\frac{a}{3a}+\frac{a}{3a}=\frac{1}{3}+\frac{1}{3}=\frac{2}{3}\)

Vậy \(M=\frac{2}{3}\)

29 tháng 11 2019

\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)

\(\Leftrightarrow\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ca}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{1}{a}+\frac{1}{b}=\frac{1}{b}+\frac{1}{c}\\\frac{1}{b}+\frac{1}{c}=\frac{1}{c}+\frac{1}{a}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{1}{a}=\frac{1}{c}\\\frac{1}{b}=\frac{1}{a}\end{cases}}\)

\(\Leftrightarrow a=b=c\)

Vậy P =1

16 tháng 3 2023

\(\left.\begin{matrix} b^2=ac\Rightarrow \dfrac{a}{b}=\dfrac{b}{c} \\c^2=bd \Rightarrow \dfrac{b}{c}=\dfrac{c}{d}\end{matrix}\right\}\)

\(\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\\ \Rightarrow\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}\)

Áp dụng t/c của DTSBN , ta có :

\(\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}\\ \Rightarrow\dfrac{a^3}{b^3}=\dfrac{a^3+b^3+c^3}{d^3+c^3+d^3}\left(1\right)\)

Có `a^3/b^3=a/b*a/b*a/b=a/b*b/c*c/d=a/d` ( do `a/b=b/c=c/d` )`(2)

Từ `(1);(2)=>` \(\dfrac{a}{d}=\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}\)