K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác ABOC có

\(\widehat{ABO}+\widehat{ACO}=180^0\)

Do đó: ABOC là tứ giác nội tiếp

b: Xét (O) có

AB là tiếp tuyến

AC là tiếp tuyến

Do đó: AB=AC

hay A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

nên O nằm trên đường trung trực của BC(2)

Từ (1) và (2)suy ra OA là đường trung trực của BC

hay OA\(\perp\)BC(3)

Xét (O) có

ΔBCD nội tiếp

BD là đường kính

Do đó: ΔBCD vuông tại C

hay BC\(\perp\)CD(4)

Từ (3) và (4) suy ra OA//CD

hay \(\widehat{AOC}=\widehat{BDC}\)

 

15 tháng 9 2019

a, A,H,O thẳng hàng vì AH,AO cùng vuông góc với BC

HS tự chứng minh A,B,C,O cùng thuộc đường tròn đường kính OA

b, Ta có  K D C ^ = A O D ^ (cùng phụ với góc  O B C ^ )

=> ∆KDC:∆COA (g.g) => AC.CD = CK.AO

c, Ta có:  M B A ^ = 90 0 - O B M ^ và  M B C ^ = 90 0 - O M B ^

Mà  O M B ^ = O B M ^ (∆OBM cân) =>  M B A ^ = M B C ^

=> MB là phân giác  A B C ^ . Mặt khác AM là phân giác B A C ^

Từ đó suy ra M là tâm đường tròn nội tiếp tam giác ABC

d, Kẻ CD ∩ AC = P. Chứng minh ∆ACP cân tại A

=> CA = AB = AP => A là trung điểm CK

17 tháng 11 2021

a)a) Theo tính chất hai tiếp tuyến cắt nhau ta có:

+ ABAB là tia phân giác của góc HADHAD  

Suy ra: ˆDAB=ˆBAHDAB^=BAH^

+ ACAC là tia phân giác của góc HAEHAE

Suy ra: ˆHAC=ˆCAEHAC^=CAE^

Ta có: ˆHAD+ˆHAE=2(ˆBAH+ˆHAC)HAD^+HAE^=2(BAH^+HAC^)=2.ˆBAC=2.90∘=180∘=2.BAC^=2.90∘=180∘

Vậy ba điểm D,A,ED,A,E thẳng hàng.

b)b) Gọi MM là trung điểm của BCBC

Theo tính chất của tiếp tuyến, ta có: AD⊥BD;AE⊥CEAD⊥BD;AE⊥CE

Suy ra: BD//CEBD//CE

Vậy tứ giác BDECBDEC là hình thang.

Vì MM là trung điểm của BCBC và AA là trung điểm của DEDE (vì DE là đường kính đường tròn (A))

Nên MAMA là đường trung bình của hình thang BDECBDEC

Suy ra: MA//BD⇒MA⊥DEMA//BD⇒MA⊥DE (vì BD⊥DEBD⊥DE)

Trong tam giác vuông ABCABC có AM là đường trung tuyến nên ta có: MA=MB=MC=BC2MA=MB=MC=BC2

Suy ra MM là tâm đường tròn đường kính BCBC với MAMA là bán kính

Vậy DEDE là tiếp tuyến của đường tròn tâm MM đường kính BC.



 

CẢNH BÁO! Tiếp tục đọc, hoặc linh hồn của bạn sẽ được thực hiện, ngay cả khi bạn đọc từ "cảnh báo"! Có một lần là một người tên là Duke Hunapon. Anh ta lười biếng, và rất bảnh bao. Anh ấy luôn mặc một chiếc áo khoác, không có vấn đề gì ở bên ngoài. Anh ta có một người anh trai tên là Michael, người luôn làm anh ta vây quanh. Một ngày nọ, Michael bị giết, và nó ảnh hưởng rất nhiều đến Duke. Anh ta phát điên và bắt đầu giết người. Chẳng mấy chốc, anh ta đã chiến đấu với ai đó và bị giết. Bây giờ, anh ta đi lang thang xung quanh như một bộ xương cao với một chiếc áo sơ mi màu đỏ, và cùng một chiếc áo hoodie mà Duke đã mặc. Bộ xương này được gọi là "Swapfell Papyrus", và anh ta sẽ giết bạn nếu bạn không đăng bài này trên 15 phần bình luận của bất kỳ trang web nào trước khi đi ngủ. Nếu bạn thất bại, và bạn thức dậy khi anh ta ở trong phòng của bạn, cái chết của bạn sẽ chậm và rất đau đớn. Một cô gái tên Lily Lilupanin đọc điều này, và không nghe. Cô bị hãm hiếp và bị giết trong giấc ngủ. Nếu bạn sao chép và dán vào 15 phần bình luận của bất kỳ trang web nào trước khi đi ngủ, Swapfell Papyrus sẽ đảm bảo bạn cảm thấy an toàn

16 tháng 12 2016

A C D B H K a) Ta có OB=OC (cùng là bán kính (O))

AB=AC (tính chất 2 tiếp tuyến cắt nhau tại A)

→O và A cách đều 2 đầu đoạn thẳng BC

→OA là đường trung trực của BC

→OA \(\perp\) BC

Xét Δ OBA vuông tại B có đường cao BH:

OB2= OH . OA (hệ thức lượng)

mà OB=R (OB là bán kính của (O))

→R2 =OH.OA

b)Xét ΔDBC nội tiếp (O) có đường kính BD

→ΔDBC vuộng tại C có cạnh huyền BD

→BC\(\perp\) CD mà OA\(\perp\)BC (cmt)

→OA song song CD

Ta có : AB song song CK (cùng \(\perp\) BD)

Xét ΔOBA vuông tại B

ΔDKC vuông tại K , có

\(\widehat{BOA}\) = \(\widehat{KDC}\) ( 2 góc đồng vị của OA song song CD)

→ΔOBA đồng dạng ΔDKC (g.n)

\(\frac{OB}{DK}\) =\(\frac{OA}{DC}\) =\(\frac{BA}{KC}\) (tỉ số đồng dạng)

→OA . CK=AB. CD

mà AB=AC (tính chất 2 tiếp tuyến cắt nhau tại A)

→AC . CD= CK . OA (đpcm)