tìm các số tự nhiên k để:
7.k và 11.k đều là số nguyên tố.Với giá trị nào của k thì 7k và 11k đều là 2 số nguyên tố.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b, Nếu p= 2 thì p+2= 2+2=4 chia hết cho 2 →là hợp số ( loại )
Nếu p= 3 thì p+6= 3+6=9 chia hết cho 3 →là hợp số ( loại )
Nếu p= 4 thì p+18= 4+18=22 chia hết cho 22 →là hợp số ( loại )
Nếu p=5 thì \(\left[\begin{array}{nghiempt}p+2=5+2=7\\p+6=5+6=11\\p+18=5+18=23\end{array}\right.\) ↔ Là số nguyên tố
Vì p có 2 giá trị cần tìm nên ta tiếp tục tìm kiếm nha bn
Nếu p=6 thì p+2= 6+2 =8 chia hết cho 2 →là hợp số ( loại )
Nếu p=7 thì p+2=7+2=9 chia hết cho 3 →là hợp số ( loại )
Nếu p=8 thì p+2= 8+2=10 chia hết cho2 →là hợp số ( loại )
Nếu p=9 thì p+6=9+6=15 chia hết cho 5 →là hợp số ( loại )
Nếu p=10thì p+6=10+6=16 chia hết cho 2 →là hợp số ( loại )
Nếu p=11 thì \(\left[\begin{array}{nghiempt}p+2=11+2=13\\p+6=11+6=17\\p+18=11+18=29\end{array}\right.\) → là SNT
Vậy có 2 giá trị p= 5 và p= 11
+ Nếu p=2 thì p+10 = 2+10 = 12 chia hết cho 2 →là hợp số (loại)
+ Nếu p=3 thì p+10= 3+ 10 =13 → là số nguyên tố
......................p+14 = 3+14=17 → là số nguyên tố
** Nếu p > 3 thì p sẽ có dạng 3k + 1 và 3k+2
* Nếu p= 3k+1 thì p+14= 3k+1+14=3k+15 chia hết cho 3→là hợp số (loại)
Nếu p= 3k+2 thì p+10= 3k+2+10=3k+12 chia hết cho 3 →là hợp số (loại)
Vậy có 1 và chỉ cí 1 giá trị p=3
a)Ta có số nguyên tố là số có ước chỉ là chính nó và số một
=> nếu k lớn hơn 1 thì k sẽ chia hết cho cả những số khác 1 và chính nó
=> k=1
a)Ta có số nguyên tố là số có ước chỉ là chính nó và số một
=> nếu k lớn hơn 1 thì k sẽ chia hết cho cả những số khác 1 và chính nó
=> k=1
a) Đ
b) S
Vì tổng của hai số nguyên bằng 0 thì cả hai số nguyên đó đều bằng 0 hoặc hai số đó là hai số đối nhau. Ví dụ: (-3) + 3 = 0+ 0 = 0
c) Đ
d) S
Vì khẳng định sẽ bị sai khi các số nguyên đó không cùng dấu.
2) Vì p là số nguyên tố nên ta xét các trường hợp sau:
a) Với p = 2 thì p + 10 = 2 + 10 = 12 là hợp số (loại), tương tự với p + 20 cũng là hợp số.
Với p = 3 thì p + 10 = 3 + 10 = 13 là số nguyên tố (nhận); p + 20 = 3 + 20 = 23 là số nguyên tố (nhận)
Vì p là số nguyên tố và p > 3 nên p có dạng 3k + 1; 3k + 2
Với p = 3k + 1 => p + 10 = 3k + 1 + 10 = 3k + 11
Bài 1: Gọi hai số cần tìm là a và b.
Do tích ab là số nguyên tố nên một trong hai số là số 1. Số còn lại là một số nguyên tố. Coi b = 1 và a là số nguyên tố.
Khi đó tổng của hai số là a + 1.
Để a và a + 1 đều là số nguyên tố thì a = 1. Vậy hai số cần tìm là 1 và 2.
Bài 2: Ta có:
\(\overline{ab}.\overline{cd}=\overline{ddd}\Leftrightarrow\overline{ab}.\overline{cd}=d.111=d.3.37\)
Do 37 là số nguyên tố nên hoặc ab hoặc cd phải chia hết cho 37. Ta giả sử đó là ab
Do ab là số có hai chữ số nên ab = 37 hoặc 74
TH1: \(\overline{ab}=37\Rightarrow37.\overline{cd}=d.3.37\Rightarrow\overline{cd}=3d\)
\(\Rightarrow10c=2d\Rightarrow5c=d\Rightarrow c=1;d=5\)
Ta có 37.15 = 555
TH2: \(\overline{ab}=74\Rightarrow74.\overline{cd}=d.3.37\Rightarrow2.\overline{cd}=3d\)
\(\Rightarrow20c=d\) (Loại)
Vậy ta có phép tính: 37.15 = 555
\(n+26=a^3\left(a\in N\cdot\right)\)
\(n-11=b^3\left(b\in N\cdot\right)\)
=>\(a^3-b^3=37\)
\(\left(a-b\right)\left(a^2+ab+b^2\right)=37\)
\(\Rightarrow\left(a-b\right)\&\left(a^2+ab+b^2\right)\) là ước của 37
Mà \(a^2-ab+b^2\ge a-b\ge0\)
\(\int^{a^2+ab+b^2=37}_{a-b=1}\Leftrightarrow\int^{a=b+1}_{\left(b+1\right)^2+b\left(b+1\right)+b^2=37}\Leftrightarrow\int^{a=b+1}_{3b^2+3b-36=0}\Leftrightarrow\int^{a=4}_{b=3}\)(vì a;b>0) thay hoặc a vào chỗ đặt rồi tự tìm nốt
Số tự nhiên k là 1
Vì 7.1=7 và 7 chia hết cho 1 và chính nó
11 cũng như vậy