Tìm các cặp số nguyên (x,y) thỏa mãn:
\(^{x^2+xy-2019x-2020y-2021=0}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đẳng thức \(\left(x-y\right)\left[2019\left(x+y\right)+1\right]=y^2\)
d là ƯCLN (x-y);[(x+y)2019+1)
\(\Leftrightarrow\hept{\begin{cases}x-y⋮d\\\left(x+y\right)2019+1⋮d\end{cases}\Rightarrow y^2⋮d^2\Leftrightarrow y⋮d}\)
=> 2019(y+x) chia hết cho d => 2y.2019+1 chia hết cho d
=> d=1
=> (x-y);2019(x+y)+1 là 2 số nguyên tố cùng nhau mà tích là 2 số chính phương => x-y là số chính phương
Đặt x - y = t
\(x=y+t\)
\(x^2=\left(y+t\right)^2=\left(y+t\right)\left(y+t\right)=y^2+2yt+t^2\)
Thay vào ta có :
\(y+t+2019 \left(y^2+2yt+t^2\right)=2020y^2+y\)
\(t+4038yt+2019t^2=y^2\)
\(t+2019.2020t^2=\left(y-2019t\right)^2\)
\(t\left(1+2019.2020t\right)=\left(y-2019t\right)^2\)
\(\Rightarrow\)t là số chính phương do t và 1 + 2019.2020t là hai số nguyên tố cùng nhau.
\(\Leftrightarrow2x^2-x+1=xy+2y\)
\(\Leftrightarrow2x^2-x+1=y\left(x+2\right)\)
\(\Leftrightarrow y=\dfrac{2x^2-x+1}{x+2}=2x-5+\dfrac{11}{x+2}\)
Do y nguyên \(\Rightarrow\dfrac{11}{x+2}\) nguyên \(\Rightarrow x+2=Ư\left(11\right)\)
Mà x nguyên dương \(\Rightarrow x+2\ge3\Rightarrow x+2=11\Rightarrow x=9\)
\(\Rightarrow y=14\)
Vậy \(\left(x;y\right)=\left(9;14\right)\)
\(\Leftrightarrow y\left(x-2\right)+\left(x-2\right)-1=0\)
\(\Leftrightarrow\left(x-2\right)\left(y+1\right)=1\)
TH1:
\(\left\{{}\begin{matrix}x-2=1\\y+1=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=0\end{matrix}\right.\)
TH2:
\(\left\{{}\begin{matrix}x-2=-1\\y+1=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
Vậy (x;y) = (3;0); ( 1;-2)
\(x\left(y+1\right)=2y+3\)
\(\Rightarrow x=\frac{2y+3}{y+1}\left(y\ne-1\right)\)
\(\Rightarrow x=\frac{2\left(y+1\right)+1}{y+1}=2+\frac{1}{y+1}\)
Để x nguyên thì y+1 phải là ước của 1
\(\Rightarrow y+1=\left\{-1;1\right\}\Rightarrow y=\left\{-2;0\right\}\)thay thế vào biểu thức tính x
\(\Rightarrow x=\left\{1;3\right\}\)
Ta có các cặp \(\left(x,y\right)=\left(1;-2\right);\left(x,y\right)=\left(3;0\right)\)