m.n giúp mik nhé!!!
Cho biểu thức A= 3n-5/n+4. Tìm số nguyên n để biểu thức A có giá trị lớn nhất.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để \(\frac{3n+9}{n-4}\) nguyên
=> 3n+9 chia hết cho n-4
=> 3n-12+21 chia hết cho n-4
=> 3.(n-4) + 21 chia hết cho n-4
=> 21 chia hết cho n-4 ( vì 3.(n-4) chia hết cho n-4)
=> n-4 = -1;1;-3;3;-7;7;-21;21
=> n=3;5;1;7;-3;11;-17;25
VÌ n nhỏ nhất => n=-17
Bg
a) Ta có: A = \(\frac{4n+1}{3n+1}\) (n thuộc Z)
Để A thuộc Z thì 4n + 1 \(⋮\)3n + 1
=> 4.(3n + 1) - 3.(4n + 1) \(⋮\)3n + 1
=> 12n + 4 - (12n + 3) \(⋮\)3n + 1
=> 12n + 4 - 12n - 3 \(⋮\)3n + 1
=> (12n - 12n) + (4 - 3) \(⋮\)3n + 1
=> 1 \(⋮\)3n + 1
=> 3n + 1 thuộc Ư(1)
Ư(1) = {1; -1}
=> 3n + 1 = 1 hay -1
=> 3n = 1 - 1 hay -1 - 1
=> 3n = 0 hay -2
=> n = 0 ÷ 3 hay -2 ÷ 3
=> n = 0 hay -2/3
Mà n thuộc Z
=> n = 0
Vậy n = 0 thì A nguyên
\(A=\frac{n+1}{n-2}\text{ nguyên}\)
\(\Leftrightarrow n+1⋮n-2\Leftrightarrow\left(n+1\right)-\left(n-2\right)⋮n-2\Leftrightarrow3⋮n-2\)
\(\Leftrightarrow n-2\in\left\{-1;1;-3;3\right\}\Leftrightarrow n\in\left\{1;3;-1;5\right\}\)
\(Vậy:n\in\left\{1;3;-1;5\right\}\left(tm\right)\)
n nguyên nhé!
\(\frac{n+1}{n-2}=1+\frac{3}{n-2}\)Vì A có giá trị lớn nhất nên mẫu bé nhất >0
=> n=3=>A có GTLN là: 4
Vậy: Amax=4. Dấu "=" xảy ra khi: x=3
`A = (3n + 5)/(n + 4)`
`<=> 17/(n + 4)` là nguyên
`=> n + 4 in Ư (17) = {1; -1; 17; -17}`
`=> n = -3; -5; 13; -21`
cảm ơn nha!! ko có bn chắc mik quên lun