Cho hình vuông ABCD và điểm M đối xứng với D qua C. H,K lần lượt là hình chiếu của C và D lên AM. I là tâm hình vuông. Biết B thuộc đường thẳng 5x + 3y - 10 = 0, K (1;1) và phương trình đường thẳng IH là 3x + y + 1 = 0. Tìm tọa độ B
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ADHE có
góc ADH=góc AEH=góc DAE=90 độ
=>ADHE là hình chữ nhật
=>AH=ED
b: Xet tứ giác AHEK có
HE//AK
HE=AK
=>AHEK là hình bình hành
a)Ta có
BK=KC (GT)
AK=KD( Đối xứng)
suy ra tứ giác ABDC là hình bình hành (1)
mà góc A = 90 độ (2)
từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật
b) ta có
BI=IA
EI=IK
suy ra tứ giác AKBE là hình bình hành (1)
ta lại có
BC=AD ( tứ giác ABDC là hình chữ nhật)
mà BK=KC
AK=KD
suy ra BK=AK (2)
Từ 1 và 2 suy ra tứ giác AKBE là hình thoi
c) ta có
BI=IA
BK=KC
suy ra IK là đường trung bình
suy ra IK//AC
IK=1/2AC
mà IK=1/2EK
Suy ra EK//AC
EK=AC
Suy ra tứ giác AKBE là hình bình hành
Bài này có gì đâu em ! Anh làm nhé !
Chuyển vế cái cần chứng minh ta được
1/AB^2 - 1/AE^2 =1/4AF^2
hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2
hay BE^2/ 4BC^2.AE^2 = 1/AF^2
Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE
a: Xét tứ giác ABCD có
M là trung điểm của BD
M là trung điểm của AC
Do đó: ABCD là hình bình hành
mà \(\widehat{BAD}=90^0\)
nên ABCD là hình chữ nhật
Mình không thể giải được, có cách giải quyết là cậu chứng minh 2 điểm đó nằm trong 2 tam giác nội tiếp đường tròn thì sẽ thuộc đường tròn