K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2016

2n3-n2+5n+6

=n2(2n+1)-2n2+5n+6

=n2(2n+1)-n(2n+1)+6n+6

=> 6n+6 chia hết 2n+1

3(2n+1)+3 chia hết 2n+1

=> 3 chia hết 2n+1

=> 2n+1 thuộc Ư(3)=1 ; 3 ; -1 ; -3

2n = 0 ; 2 ; -2 ; -4

n = 0 ; 1 ; -1 ; -2

kb vs mik nha

7 tháng 10 2018

\(2n^2+5n-1=2n^2-n+6n-3+2\)

                            \(=n\left(2n-1\right)+3\left(2n-1\right)+2\)

Để \(2n^2+5n-1⋮2n-1\)thì \(2⋮2n-1\)

\(\Rightarrow2n-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

Mà 2n - 1 là số lẻ nên:

\(2n-1\in\left\{-1;1\right\}\Rightarrow n\in\left\{0;1\right\}\)

Chúc bạn học tốt.

7 tháng 10 2018

2n^2 + 5n - 1 - 2n^2 - n 6n - 1 6n - 3 - 2 2n - 1 n + 3

\(2n^2+5n-1\)chia hết cho \(2n-1\)

\(\Leftrightarrow2\)chia hết cho \(2n-1\)

\(\Leftrightarrow2n-1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)

\(\Leftrightarrow2n\in\left\{-1;0;2;3\right\}\)

\(\Leftrightarrow n\in\left\{-\frac{1}{2};0;1;\frac{3}{2}\right\}\)

Mà \(n\in Z\)

\(\Rightarrow n\in\left\{0;1\right\}\)

29 tháng 7 2019

#)Giải :

1) \(\frac{n+7}{n+3}=\frac{n+3+4}{n+3}=\frac{n+3}{n+3}+\frac{4}{n+3}=1+\frac{4}{n+3}\)

\(\Rightarrow n+3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

Lập bảng xét các Ư(4) rồi chọn ra các gt thỏa mãn

29 tháng 7 2019

a) Ta có: n + 7 = (n + 3) + 4

Do n + 3 \(⋮\)n + 3 => 4 \(⋮\)n + 3

=> n + 3 \(\in\)Ư(4) = {1; -1; 2; -2; 4; -4}

Lập bảng :

n + 3 1 -1 2 -2 4 -4
  n -2 -4 -1 -5 1 -7

Vậy ...

b) Ta có: 2n + 5 = 2(n + 3) - 1

Do 2(n + 3) \(⋮\)n + 3 => 1 \(⋮\)n + 3

=> n + 3 \(\in\)Ư(1) = {1; -1}

Với: n + 3 = 1 => n = 1 - 3 = -2

n + 3 = -1 => n= -1 - 3 = -4

Vậy ...