Giải phương trình(bpt) x+3/2019+x+6/2016 > x+9/2013 + x+12/2010
giúp mình với mn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(=-7\left(x^2-\frac{10}{7}x+\frac{2016}{7}\right)\)
\(=-7\left(x^2-2.\frac{5}{7}x+\frac{25}{49}+\frac{14087}{49}\right)\)
\(=-7\left(x-\frac{5}{7}\right)^2-\frac{14087}{7}\)
ta có
\(\left(x-\frac{5}{7}\right)^2\ge0\)với mọi x
\(=>-7\left(x-\frac{5}{7}\right)^2\le0\)(nhân cả hai vế với -7)
\(=>-7\left(x-\frac{5}{7}\right)^2-\frac{14087}{7}\le-\frac{14087}{7}\)
trường hợp dấu "=" xảy ra khi và chỉ khi
\(\left(x-\frac{5}{7}\right)^2=0\)
\(=>x-\frac{5}{7}=0\)
\(=>x=\frac{5}{7}\)
vậy GTLN cảu biểu thức là \(-\frac{14087}{7}\) khi và chỉ khi x= \(\frac{5}{7}\)
\(3\left(x-2\right)^2+9\left(x-1\right)=3\left(x^2+x-3\right)\\ \Leftrightarrow3\left(x^2-4x+4\right)+9x-9=3x^2+3x-9\\ \Leftrightarrow3x^2-12x+12+9x-9-3x^2-3x+9=0\\ \Leftrightarrow-6x+12=0\\ \Leftrightarrow x=2\)
\(3\left(x-2\right)^2+9\left(x-1\right)=3\left(x^2+x-3\right)\)
\(\Leftrightarrow3\left(x^2-4x+4\right)+9x-9=3x^2+3x-9\)
\(\Leftrightarrow3x^2-12x+12+9x-9-3x^2-2x+9=0\)
\(\Leftrightarrow-6x-6=0\)
\(\Leftrightarrow-6\left(x+1\right)=0\)
\(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
Vậy phương trình có nghiệm là \(-1\)
Gợi ý :
Bài 1 : Cộng thêm 1 vào 3 phân thức đầu, trừ cho 3 ở phân thức thứ 4, có nhân tử chung là (x+2020)
Bài 2 : Trừ mỗi phân thức cho 1, chuyển vế và có nhân tử chung là (x-2021)
Bài 3 : Phân thức thứ nhất trừ đi 1, phân thức hai trù đi 2, phân thức ba trừ đi 3, phân thức bốn trừ cho 4, phân thức 5 trừ cho 5. Có nhân tử chung là (x-100)
bài 3
\(\frac{x-90}{10}+\frac{x-76}{12}+\frac{x-58}{14}+\frac{x-36}{16}+\frac{x-15}{17}=15.\)
=>\(\frac{x-90}{10}-1+\frac{x-76}{12}-2+\frac{x-58}{14}-3+\frac{x-36}{16}-4+\frac{x-15}{17}-5=0\)
=>\(\frac{x-100}{10}+\frac{x-100}{12}+\frac{x-100}{14}+\frac{x-100}{16}+\frac{x-100}{17}=0\)
=>\(\left(x-100\right).\left(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\right)=0\)
=>(x-100)=0 do \(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\ne0\)
=> x=100
a) \(-7x^2+10x-2016=-7\left(x^2-\frac{10x}{7}\right)-2016=-7\left(x^2-2.x.\frac{5}{7}+\frac{25}{49}\right)+\frac{25}{49}.7-2016=-7\left(x-\frac{5}{7}\right)^2-\frac{14087}{7}\le-\frac{14087}{7}\)Vậy Max = \(-\frac{14087}{7}\Leftrightarrow x=\frac{5}{7}\)
b) \(\frac{x+5}{11}+\frac{x+2010}{6}\ge\frac{x-1}{2017}+\frac{x+6}{2010}\)
\(\Leftrightarrow\frac{x}{2011}+\frac{x}{6}+\frac{5}{2011}+335\ge\frac{x}{2017}+\frac{x}{2010}-\frac{1}{2017}+\frac{1}{335}\)
\(\Leftrightarrow x\left(\frac{1}{2011}+\frac{1}{6}-\frac{1}{2017}-\frac{1}{2010}\right)\ge\frac{1}{335}-\frac{1}{2017}-\frac{5}{2011}-335\)
\(\Leftrightarrow\frac{677389259}{4076467935}x\ge\frac{-455205582048}{1358822645}\) \(\Leftrightarrow x\ge-2016\)
Câu b) còn cách khác nữa bạn nhé. Mình làm cách này "xù" quá ^^
`(x-1)/2013+(x-2)/2012+(x-3)/2011=(x-4)/2010+(x-5)/2009 +(x-6)/2008`
`<=> ((x-1)/2013-1)+((x-2)/2012-1)+((x-3)/2011-1)=( (x-4)/2010-1)+((x-5)/2009-1)+((x-6)/2008-1)`
`<=> (x-2014)/2013 +(x-2014)/2012+(x-2014)/2011=(x-2014)/2010+(x-2014)/2009+(x-2014)/2008`
`<=> x-2014=0` (Vì `1/2013+1/2012+1/2011-1/2010-1/2009-1/2008 \ne 0`)
`<=>x=2014`
Vậy `S={2014}`.
=>x+2022>0
=>x>-2022