K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2021

 

  
25 tháng 2 2022

a, Xét tứ giác BCEF có 

^CEB = ^CFB = 900

mà 2 góc này kề, cùng nhìn cạnh BC 

Vậy tứ giác BCEF là tứ giác nt 1 đường tròn 

b, Xét tứ giác AEHF có 

^HEA = ^HFA = 900

Vậy tứ giác AEHF là tứ giác nt 1 đường tròn 

c, Ta có ^AMN = ^ACN ( góc nt chắn cung AN ) 

^ANM = ^MBA ( góc nt chắn cung MA ) 

mà ^ACN = ^MBA ( tứ giác BCEF nt và 2 góc cùng nhìn cung CF ) 

=> ^AMN = ^ANM Vậy tam giác AMN cân tại A

=> AN = AM 

d, Ta có : ^CBM = ^CFE ( góc nt chắn cung CE của tứ giác BCEF ) 

mặt khác : ^CNM = ^CBM ( góc nt chắn cung CM ) 

=> ^CFE = ^CNM, mà 2 góc này ở vị trí đồng vị ) 

=> MN // EF 

e, Ta có AO là đường cao tam giác MAN 

mà MN // EF ; AO vuông MN => AO vuông EF 

25 tháng 2 2022

4 năm nửa em mới TL dc

8 tháng 5 2022

a) Chứng minh ADEH là tứ giác nội tiếp.Ta có: ∠ADB=900 (góc nội tiếp chắn nửa đường tròn)EH⊥AB⇒∠AHE=900Tứ giác ADEH có: ∠ADE+∠AHE=900+900=1800 nên là tứ giác nội tiếp (đpcm)b) Tia CH cắt đường tròn (O) tại điểm thứ hai là K. Gọi I là giao điểm của DK và AB. Chứng minh DI2=AI.BI.Tứ giác ADCK nội tiếp nên ∠ADK=∠ACK (hai góc nội tiếp cùng chắn cung AK) (1)Xét tứ giác ECBH có:∠ECB=∠ACB=900 (góc nội tiếp chắn nửa đường tròn)∠EHB=900(doEH⊥AB)⇒∠ECB+∠EHB=900+900=1800Do đó tứ giác ECBH nội tiếp (tứ giác có hai góc đối có tổng số đo bằng 1800)⇒∠ECH=∠EBH (hai góc nội tiếp cùng chắn cung EH)⇒∠ACK=∠DBA (2)Từ (1) và (2) suy ra ∠ADK=∠DBA⇒∠ADI=∠DBALại có ∠DBA+∠DAB=900 nên ∠ADI+∠DAB=900 hay ∠ADI+∠DAI=900⇒∠DIA=1800−(∠ADI+∠DAI)=1800−900=900⇒DI⊥AB nên DI là đường cao trong tam giác vuông ADB⇒DI2=IA.IB (hệ thức giữa cạnh và đường cao trong tam giác vuông) (đpcm)c) Khi tam giác DAB không cân, gọi M là trung điểm của EB, tia DC cắt tia HM tại N. Tia NB cắt đường tròn ngoại tiếp tam giác HMB tại điểm thứ hai là F. Chứng minh F thuộc đường tròn (O).Theo câu b, DK⊥BA tại I nên AB là đường trung trực của DK⇒DA=AK ⇒sdcungAD=sdcungAK⇒∠DCA=∠ACK ⇒CA là tia phân giác của góc ∠DCH⇒∠DCH=2∠ECH (3)Tam giác EHB vuông tại H có M là trung điểm EB nên HM là đường trung tuyến⇒MH=MB⇒ΔMHB cân tại M⇒∠DMH=∠MHB+∠MBH=2∠MBH=2∠EBH (4)Tứ giác ECBH có: ∠ECB+∠EHB=900+900=1800 nên là tứ giác nội tiếp (tứ giác có tổng hai góc đối bằng 1800)⇒∠ECH=∠EBH (5)Từ (3), (4) và (5) suy ra ∠DCH=∠DMH⇒DCMH là tứ giác nội tiếp (hai đỉnh kề nhau cùng nhìn cạnh đối diện các góc bằng nhau)⇒∠NCM=∠NHD (tính chất)Xét ΔNCM và ΔNHD có:Góc N chung∠NCM=∠NHD(cmt)⇒ΔNCM∼ΔNHD(g−g)⇒NCNH=NMND (cạnh tương ứng)⇒NC.ND=NM.NH (6)Tứ giác HMBF nội tiếp nên ∠NMB=∠NFH (tính chất)Xét ΔNMB và ΔNFH có:Góc N chung∠NMB=∠NFH (cmt)⇒ΔNMB∼ΔNFH(g−g)⇒NMNF=NBNH (cạnh tương ứng)⇒NM.NH=NB.NF (7)Từ (6) và (7) suy ra NC.ND=NF.NB⇒NCNF=NBNDXét ΔNBC và ΔNDF có:Góc N chungNCNF=NBND(cmt)⇒ΔNBC∼ΔNDF(c−g−c)⇒∠NCB=∠NFD=∠BFD (góc tương ứng)Mà ∠NCB+∠DCB=1800 (kề bù)Nên ∠BFD+∠DCB=1800Do đó tứ giác DCBF nội tiếp (tứ giác có tổng hai góc đối bằng 1800)Vậy điểm F nằm trên đường tròn (O) (đpcm).

9 tháng 5 2022

Bài 1 : 

a, Ta có AE ; BF là đường cao 

Xét tứ giác AFEB có 

^AFB = ^AEB = 900

mà 2 góc này kề, cùng nhìn cạnh AB 

Vậy tứ giác AFEB là tứ giác nt 1 đường tròn 

b, +) Kẻ tiếp tuyến KC với C là tiếp điểm 

Ta có ^KAC = ^CBA ( cùng chắn cung CA ) 

^ABC = ^CFE ( góc ngoài đỉnh F của tứ giác AFEB ) 

=> ^EFC = ^KCA mà 2 góc này ở vị trí so le trong => EF // CK 

mà OC vuông CK vì CK là tiếp tuyến => EF vuông CK