So sánh các lũy thừa sau:
a) 2535 và 12515
b) 1130 và 2320
c) 9920 và 999910
d) 1010 và 80. 505
e) 23n và 32n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
sorry nghe h tớ gửi quá 100 tin nhắn nên nó ko cho gửi
Bài 1
a)2711>818
b)6255>1257
c)536<1124
d)32n>23n
Bài 2
a)523<6.522
b)7.213>216
c)2115<275.498
a: \(2^{300}=8^{100}\)
\(3^{200}=9^{100}\)
mà 8<9
nên \(2^{300}< 3^{200}\)
b: \(3^{500}=243^{100}\)
\(7^{300}=343^{100}\)
mà 243<243
nên \(3^{500}< 7^{300}\)
Ta có : 125^80 = (5^3)^80 = 5^240
25^118= (5^2)^118 = 5^236
Vì 5^240 > 5^236 nên 125^80 > 25^118
Ta có: 9920 = (992)10= 980110
9801 < 9999 => 980110 < 999910
Vậy 9920 < 999910
Lời giải:
a.
\(3^{21}=3.3^{20}=3.9^{10}\)
\(2^{31}=2.2^{30}=2.(2^3)^{10}=2.8^{10}\)
Mà $3.9^{10}> 2.8^{10}$ nên $3^{21}> 2^{31}$
b.
$2^{300}=(2^3)^{100}=8^{100}$
$3^{200}=(3^2)^{100}=9^{100}$
Mà $8^{100}< 9^{100}$ nên $2^{300}< 3^{200}$
c.
$32^9=(2^5)^9=2^{45}$
$18^{13}> 16^{13}=(2^4)^{13}=2^{52}$
Mà $2^{45}< 2^{52}$ nên $32^9< 18^{13}$
\(a,64^5=\left[8^2\right]^5=8^{10}\)
Giữ nguyên \(11^{10}\)
Mà \(8< 11\)=> \(8^{10}< 11^{10}\)hay \(64^5< 11^{10}\)
\(b,81^7=\left[9^2\right]^7=9^{14}\)
Giữ nguyên \(7^{14}\)
Mà \(9>7\)=> \(9^{14}>7^{14}\)hay \(81^7>7^{14}\)
c, Vì \(244>80\)=> \(244^{11}>80^{11}\)
d, Tương tự
a) 645 và 1110
Ta có : 645 = (82)5 = 82.5 = 810
Vì 810 < 1110 nên 645 < 1110
b) 817 và 714
Ta có : 817 = (92)7 = 92.7 = 914
Vì 914 > 714 nên 817 > 714
c) 24411 và 8011
Vì 244 > 80 và số mũ bằng nhau nên 24411 > 8011
=))
a) 2535