Xác định hằng số a sao cho:
a) \(10x^2-7x+a\) chia hết cho \(2x-3\)
b) \(2x^2+ax+1\) chia cho \(x-3\)dư 4
c) \(ax^5+5x^4-9\)chia hết cho \(x-1\)
Mình đang cần lời giải (chi tiết). Xin được giúp đỡ. Cảm ơn nhiều.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Gọi thương phép chia là Q(x) khi đó, ta có:
2x2 + ax +1 = (x-3).Q(x) +4
Với x=3 ta có: 2.32 + 3a +1= 0.Q(x) +4
19+3a = 4
=> 3a= -15
=> a= -5
Giai tương tự với các câu còn lại hoặc có thể dùng phương pháp đồng nhất hệ số
a: \(\Leftrightarrow10x^2-15x+8x-12+a+12⋮2x-3\)
=>a+12=0
hay a=-12
b: \(\Leftrightarrow2x^2+8x+\left(a-8\right)x+4a-32-4a+28⋮x+4\)
=>-4a+28=0
=>a=7
c: \(\Leftrightarrow2x^3-2x-x^2+1+\left(a+2\right)x+b-1⋮x^2-1\)
=>a+2=0 và b-1=0
=>a=-2 và b=1
a: \(\Leftrightarrow2x^2+8x+\left(a-8\right)x+4\left(a-8\right)-4a+28⋮x+4\)
hay a=7
a: \(\Leftrightarrow10x^2-15x+8x-12+a+12⋮2x-3\)
=>a+12=0
=>a=-12
b: \(\Leftrightarrow ax^5-ax^4+\left(a+5\right)x^4-\left(a+5\right)x^3+\left(a+5\right)x^3-\left(a+5\right)x^2+\left(a+5\right)x^2-\left(a+5\right)x+\left(a+5\right)x-a-5+a-4⋮x-1\)
=>a-4=0
=>a=4