cho tam giác ABC trực tâm H, các đường thẳng vuông góc với AB tại B, vuông góc với AC tại C và chúng cắt nhau tại D. Chứng minh rằng
a/ tứ giác BDCH là hình bình hành
b/ góc BAC+ góc BDC= 180 độ
c/ H,M,D là 3 điểm thẳng hàng với M là trung điểm của BC
d/ OM= 1/2 AH với O là trung điểm của AD
HỘ MÌNH VỚI !!! CẢM ƠN TRƯỚC NHÁ :))
a/ Do H là trực tâm => BH vuông góc với AC mà DC vuông góc với AC => BH//CD
Tương tự cũng có CH//BD
=> BDCH là hình bình hành (Tứ giác có các cặp cạnh dối // với nhau từng đôi một là hbh)
b/ Xét tứ giác ABDC có tổng các góc trong =360
=> ^BAC+^BDC+^ABD+ACD=^BAC+^BDC+90+90=360 => ^BAC+^BDC=180
c/ Nối H với D cắt BC tại M', do BDCH là hình bình hành => M'B=M'C (t/c đường chéo hbh) => M trùng M' => H; M; D thẳng hàng
d/ Xét tam giác ADH có
OA=OD
MH=MD (t/c đường chéo hbh)
=> OM là đường trung bình của tg ADH => OM = 1/2 AH
bạn giúp mình bài tập này với
1. phân tích đa thức thành nhân tử
a) 5x(3 - 2x) - 7 (2x - 3)
b) x^3 - 4x^2 + 4x
c) x^2 + 5x + 6
2. cho biểu thức : M= (4x + 3) ^2 - 2x (x + 6) - 5 (x - 2) (x + 2)
a. rút gọn M
b. chứng minh M luôn dương.
( bạn cg giúp mình nhá. mình cảm ơn trc )