Có 2 bình cách nhiệt, bình thứ nhất chứa 2 lít nước ở nhiệt độ 200C, bình thứ hai chứa 4 lít nước ở nhiệt độ 600C. Người ta rót một ca nước từ bình 1 vào bình 2. Khi bình 2 đã cân bằng nhiệt thì lại rót một ca nước từ bình 2 sang bình 1 để lượng nước trong hai bình như lúc đầu. Nhiệt độ nước ở bình 1 sau khi cân bằng là 21,950C. Xác định lượng nước đã rót trong mỗi lần.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án : B
- Giả sử khi rót lượng nước m (kg) từ bình 1 sang bình 2, nhiệt độ cân bằng của bình 2 là t nên ta có phương trình cân bằng:
m.c.(t - t 1 ) = m 2 .c.( t 2 - t)
⇒ m.(t - t 1 ) = m 2 .( t 2 - t) (1)
- Tương tự lần rót tiếp theo nhiệt độ cân bằng ở bình 1 là t ' = 21,95°C và lượng nước trong bình 1 lúc này chỉ còn ( m 1 - m) nên ta có phương trình cân bằng:
m.c(t - t ' ) = ( m 1 - m).c( t ' - t 1 )
⇒ m.(t - t ' ) = ( m 1 - m).( t ' - t 1 )
⇒ m.(t – t ' ) = m 1 .( t ' – t1) – m.( t ' – t 1 )
⇒ m.(t – t ' ) + m.( t ' – t1) = m 1 ( t ' – t 1 )
⇒ m.(t – t 1 ) = m 1 .( t ' – t 1 ) (2)
- Từ (1) và (2) ta có pt sau:
m 2 .( t 2 - t) = m 1 .( t ' - t 1 )
⇒ 4.(60 – t) = 2.(21,95 – 20)
⇒ t = 59,025°C
- Thay vào (2) ta được
m.(59,025 – 20) = 2.(21,95 – 20)
⇒ m = 0,1 (kg)
Bạn tham khảo nhé!
a/ Giả sử khi rót lượng nước m từ bình 1 sang bình 2, nhiệt độ cân bằng của bình 2 là t nên ta có phương trình cân bằng:
m.(t - t1) = m2.(t2 - t) (1)
Tương tự lần rót tiếp theo nhiệt độ cân bằng ở bình 1 là t' = 21,950C và lượng nước trong bình 1 lúc này chỉ còn (m1 - m) nên ta có phương trình cân bằng:
m.(t - t') = (m1 - m).(t' - t1) (2)
Từ (1) và (2) ta có pt sau:
m2.(t2 - t) = m1.(t' - t1)
\(t=\dfrac{m2t2\left(t'-t1\right)}{m2}\) (3)
Thay (3) vào (2) tính toán ta rút phương trình sau:
m=m1m2(t′−t1)/m2(t2−t1)−m1(t′−t1) (4)
Thay số vào (3) và (4) ta tìm được: t = 590C và m = 0,1 Kg.
b/ Lúc này nhiệt độ của bình 1 và bình 2 lần lượt là 21,950C và 590C bây giờ ta thực hiện rót 0,1Kg nước từ bình 1 sang bình 2 thì ta có thể viết được phương trình sau:
m.(T2 - t') = m2.(t - T2)
T2=m1t′+m2t/m+m2=58,120C
Bây giờ ta tiếp tục rót từ bình 2 sang bình 1 ta cũng dễ dàng viết được phương trình sau:
m.(T1 - T2) = (m1 - m).(t - T1)
T1=mT2+(m1−m)t′/m1=23,76oC
Gọi nhiệt độ bình 2 sau khi đã cân bằng nhiệt là t1 (\(^oC\)):
- Phương trình cân bằng nhiệt sau sau khi rót lần 1:
\(m.C\left(80-t_1\right)=2.C\left(t_1-20\right)\) (1)
- Phương trình cân bằng nhiệt sau sau khi rót lần 2:
\(\left(4-m\right).C.\left(80-74\right)=m.C\left(74-t_1\right)\) (2)
Đơn giản C ở 2 vế các phương trình (1) và (2)
Giải hệ phương trình gồm (1) và (2)
\(\begin{cases}m\left(80-t_1\right)=2.\left(t_1-20\right)\\\left(4-m\right).6=m\left(74-t_1\right)\end{cases}\)\(\Leftrightarrow\)\(\begin{cases}80m-mt_1=2t_1-40\\24-6m=74m-mt_1\end{cases}\)\(\Rightarrow\)\(\begin{cases}80m=2t_1+mt_1-40\\80m=mt_1+24\end{cases}\)
\(\Rightarrow2t_1=\) 24 + 40 = 64 \(\Rightarrow t_1=\) 32
Thay \(t_1\) = 32 vào (1) ta có : m( 80 - 32) = 2 ( 32 - 20) \(\Rightarrow\) m.48 = 2.12 = 24
\(\Rightarrow\) m = 24:48 = 0,5 (kg)
Vậy : Khối lượng nước đã rót mỗi lần là m = 0,5 (kg)
Ta có phương trình cân bằng nhiệt ( lần 1)
\(Q_{toả_1}=Q_{thu_1}\\ \Leftrightarrow4c\left(60-t_{cb_1}\right)=mc\left(t_{cb_1}-20\right)\\ \Leftrightarrow t_{cb_1}=\dfrac{240+20m}{m+4}\left(1\right)\)
Ta có phương trình cân bằng nhiệt ( lần 2 )
\(Q_{toả_2}=Q_{thu_2}\\ \Leftrightarrow mc\left(t_{cb_1}-21,95\right)=\left(2-m\right)c.1,95\\ \Leftrightarrow t_{cb_1}=\dfrac{3,9+20m}{m}\left(2\right)\)
Từ (1) và (2)
\(\Leftrightarrow\dfrac{240+20m}{m+4}=\dfrac{3,9+20m}{m}\)
Giải phương trình trên ta được
\(\Rightarrow m\approx0,1kg\)
Thay m = 0,1kg ta được
\(\Leftrightarrow t_{cb}=59^o\)
Ta có phương trình cân bằng nhiệt lần 3
\(Q_{toả_3}=Q_{thu_3}\\ \Leftrightarrow4c\left(59-t_{cb}\right)=0,1c\left(t_{cb}-21,95\right)\\ \Rightarrow t_{cb}=58,1\)
\(Qthu\)(nước bình 2)\(=m.Cn.\left(t2-20\right)=2.4200.\left(t2-20\right)\left(J\right)\)
\(Qtoa\)(nước bình 1)\(=m1.Cn.\left(60-t2\right)=4200.m1\left(60-t2\right)\left(J\right)\)
\(=>2.4200\left(t2-20\right)=4200m1\left(60-t2\right)\)
\(=>2\left(t2-20\right)=m1\left(60-t2\right)\left(1\right)\)
*khi có cân bằng nhiệt lại rótlượng nước như cũ từ bình 2 sang bình 1. Khi đó nhiệt độ bình 1 là 580C
\(Qth\)u(nước bình 2 rót sang)\(=m1.Cn.\left(58-t2\right)=4200m1\left(58-t2\right)\)(J)
\(Qtoa\)(nuosc bình 1)\(=\left(10-m1\right).Cn.\left(60-58\right)=\left(10-m1\right).4200.2\left(J\right)\)
\(=>4200m1\left(58-t2\right)=4200\left(10-m1\right).2\)
\(=>m1\left(58-t2\right)=2\left(10-m1\right)\left(2\right)\)
\(\left(1\right)\left(2\right)\)=>hệ pt: \(\left\{{}\begin{matrix}2\left(t2-20\right)=m1\left(60-t2\right)\\m1\left(58-t2\right)=2\left(10-m1\right)\end{matrix}\right.\)
giải hệ trên \(=>\left\{{}\begin{matrix}m=\dfrac{2}{3}kg\\t2=30^oC\end{matrix}\right.\)
Vậy..............
b, có:
\(Qtoa=10.Cn.\left(60-t\right)\left(J\right)\)
\(Qthu=2.4200\left(t-20\right)\left(J\right)\)
\(=>10.4200.\left(60-t\right)=2.4200.\left(t-20\right)=>t\approx53,3^0C\)
Ta có phương trình cân bằng nhiệt lần 1
\(Q_{tỏa}=Q_{thu}\\ \Leftrightarrow4c\left(60-t_{cb_1}\right)=mc\left(t_{cb_1}-20\right)\\ \Leftrightarrow240-4t_{cb_1}=mt_{cb_1}-20m\\ \Leftrightarrow t_{cb_1}=\dfrac{240+20m}{m+4}\left(1\right)\)
Ta có phương trình cân bằng nhiệt lần 2
\(Q_{tỏa}=Q_{thu}\\ \Leftrightarrow mc\left(t_{cb_1}-21,95\right)=2-mc.1,95\\ \Leftrightarrow mt_{cb_1}=3,9-1,95m+21,95m\\ \Leftrightarrow t_{cb_1}=\dfrac{3,9+20m}{m}\left(2\right)\)
Từ (1) và (2)
\(\dfrac{240+20m}{m+4}=\dfrac{3,9+20m}{m}\Rightarrow240m+20m^2=3,9m+20m^2+15,6+80m\\ \Leftrightarrow m\approx0,1\)