cho \(\frac{2x+13y}{3x-7y}=\frac{2z+13t}{3z-7t}\). chứng minh \(\frac{x}{y}=\frac{z}{t}\)
ai giải được thì mình tích cho. khi nào mình tìm được người giúp mình câu này làm bài nào thì mình tích luôn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Theo hệ thức viét ta có :
Vì x1=1 và x2=-1 là 2 nghiệm của pt : f(x)=ax^2+bx+c nên :
\(x_1.x_2=\frac{c}{a}=-1\cdot1=-1\) => \(a=-c\)
Vậy a và c là 2 số đối nhau
b, Ta có : f(x-1)=a(x-1)^2+b(x-1)+c
=> \(f\left(x\right)-f\left(x-1\right)=ax^2+bx+c-\left[a\left(x-1\right)^2+b\left(x-1\right)+c\right]\)
\(=2ax+a+b\)
Mặt khác : f(x)-f(x-1)=x nên : \(2ax+a+b=x\)
<=> \(x\left(2a-1\right)+a+b=0\)
Do \(a\ne0\) ( đk của pt bậc 2 ) nên a=1/2 và a+b=0 ( nghiệm thoả mãn )
=> \(f\left(x\right)=\frac{1}{2}x^2-\frac{1}{2}x+c\)
Áp dụng kết quả trên ta có : \(f\left(1\right)-f\left(0\right)=1\)
............
\(f\left(n\right)-f\left(n-1\right)=n\)
=> \(1+2+3+...+n=f\left(1\right)-f\left(0\right)+f\left(2\right)-f\left(1\right)+...+f\left(n\right)-f\left(n-1\right)\)
\(=f\left(n\right)-f\left(0\right)=\frac{1}{2}n^2-\frac{1}{2}n+c-\left(0\cdot a+0\cdot b+c\right)=\frac{1}{2}n^2-\frac{1}{2}n\)
\(\frac{x^2}{2y}+\frac{y^2}{2x}+\frac{y^2}{2z}+\frac{z^2}{2y}+\frac{z^2}{2x}+\frac{x^2}{2z}\ge\frac{\left(2x+2y+2z\right)^2}{4\left(x+y+z\right)}=x+y+z\)
\(\frac{7x+5y}{3x-7y}=\frac{7z+5t}{3z-7t}=>\frac{7x+5y}{7z+5t}=\frac{3x-7y}{3z-7t}\)
=>\(\frac{7x}{7z}=\frac{5y}{5t}=\frac{3x}{3z}=\frac{7y}{7t}\)(t/c ngược của t/c dãy tỉ số bằng nhau)
=>\(\frac{x}{z}=\frac{y}{t}=\frac{x}{z}=\frac{y}{t}\)
TỪ \(\frac{x}{z}=\frac{y}{t}=>\frac{x}{y}=\frac{z}{t}\)(ĐPCM)
a) Áp dụng BĐT AM-GM ta có:
\(x+y\ge2\sqrt{xy}\)
\(\Rightarrow\)\(\frac{x+y}{2}\ge\sqrt{xy}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y\)
b) Áp dụng BĐT AM-GM ta có:
\(\frac{\sqrt{x}}{\sqrt{y}}+\frac{\sqrt{y}}{\sqrt{x}}\ge2\sqrt{\frac{\sqrt{x}}{\sqrt{y}}.\frac{\sqrt{y}}{\sqrt{x}}}=2\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y\)
Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)( Với x,y >0)
Nhân cả 2 vế với 2 rồi áp dụng. Ra ngay
Từ biểu thức trên không thể có x = y
\(\sqrt{\left(2-\frac{1}{y}\right).\frac{1}{y}}=\sqrt{\left(2-\frac{1}{x}\right).\frac{1}{x}}\)
=> \(\left(2-\frac{1}{y}\right).\frac{1}{y}=\left(2-\frac{1}{x}\right).\frac{1}{x}\)
=> \(\frac{2}{y}-\frac{1}{y^2}=\frac{2}{x}-\frac{1}{x^2}\)
=> \(\frac{2}{x}-\frac{2}{y}=\frac{1}{x^2}-\frac{1}{y^2}\)
=> \(2.\left(\frac{1}{x}-\frac{1}{y}\right)=\left(\frac{1}{x}+\frac{1}{y}\right)\left(\frac{1}{x}-\frac{1}{y}\right)\)( # )
Với x = y
=> \(\frac{1}{x}=\frac{1}{y}\)
=> \(\frac{1}{x}-\frac{1}{y}=0\)
=> ( # ) luôn đúng
Với \(x\ne y\)
=> \(\frac{1}{x}-\frac{1}{y}\ne0\)
Chia cả hai vế của ( # ) cho \(\frac{1}{x}-\frac{1}{y}\)
=> 2 = \(\frac{1}{x}+\frac{1}{y}\)
Vậy với x, y thỏa mãn \(2=\frac{1}{x}+\frac{1}{y}\)hoặc x = y ( x, y > 0 ) thì \(\sqrt{\left(2-\frac{1}{y}\right).\frac{1}{y}}=\sqrt{\left(2-\frac{1}{x}\right).\frac{1}{x}}\)luôn đúng và với \(x\ne y\)thì biểu thức vẫn có thể đúng.
Vậy với biểu thức đúng thì x chưa chắc đã bằng y
Cám ơn Nguyễn Chí Thành
Bạn đúng rồi
Đúng là mk nghĩ thiếu thường hợp .
^.^
=C+ả +T+r+ọ+n+g
Chỉ cần quy đồng là ra nhé.