So sánh A và B biết :
A= 39/40 và B= 1/ 21 + 1/ 22 + 1/ 23 +.................+ 1/ 79 + 1/ 80
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B = 1/21 + 1/22 + ... + 1/50 > 1/60 + 1/60 + ... + 1/60 (30 số hạng)
=> B > 30/60 = 1/2
Mà 1/2 > 39/40
=> B > A
\(B=\frac{1}{21}+\frac{1}{22}+...+\frac{1}{50}< \frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}=\frac{3}{5}=\frac{24}{40}< \frac{39}{40}=A\)
\(\Rightarrow A>B\)
a) A = 2⁰ + 2¹ + 2² + 2³ + ... + 2²⁰²²
2A = 2 + 2² + 2³ + 2⁴ + ... + 2²⁰²³
A = 2A - A
= (2 + 2² + 2³ + 2⁴ + ... + 2²⁰²³) - (2⁰ + 2¹ + 2² + 2³ + ... + 2²⁰²²)
= 2²⁰²³ - 2⁰
= 2²⁰²³ - 1
Vậy A = B
b) A = 2021 . 2023
= (2022 - 1).(2022 + 1)
= 2022.(2022 + 1) - 2022 - 1
= 2022² + 2022 - 2022 - 1
= 2022² - 1 < 2022²
Vậy A < B
Ta có: \(\dfrac{1}{21}+\dfrac{1}{22}+...+\dfrac{1}{50}< \dfrac{1}{60}\times30\)
\(\dfrac{1}{21}+\dfrac{1}{22}+...+\dfrac{1}{50}< \dfrac{1}{2}< \dfrac{3}{4}\)(đpcm)
Tại sao bạn lại có \(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{50}< \frac{1}{60}.30\)???
\(B=\frac{23^{41}+1}{23^{42}+1}\)
Vì B < 1
\(\Rightarrow B=\frac{23^{41}+1}{23^{42}+1}< \frac{23^{41}+1+22}{23^{42}+1+22}=\frac{23^{41}+23}{23^{42}+23}=\frac{23(23^{40}+1)}{23\left(23^{41}+1\right)}=\frac{23^{40}+1}{23^{41}+1}=A\)
P/s: Hoq chắc
ta có
\(B=\frac{23^{41}+1}{23^{42}+1}< \frac{23^{41}+1+22}{23^{42}+1+22}=\frac{23^{41}+23}{23^{42}+23}=\frac{23\left(23^{40}+1\right)}{23\left(23^{41}+1\right)}=\frac{23^{40}+1}{23^{41}+1}=A\)
\(\Rightarrow B< A\)