K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Sửa đề: ΔABH đồng dạng với ΔCBA

Xét ΔABH vuông tại H và ΔCBA vuông tại A có

góc B chung

=>ΔABH đồng dạng với ΔCBA

b: Xét ΔAHB vuông tại H và ΔCHA vuông tại H có

góc HAB=góc HCA

=>ΔAHB đồng dạng với ΔCHA

=>HA/HC=HB/HA

=>HA^2=HB*HC

c: Xét tứ giác ABCD có

AB//CD

AB=CD

=>ABCD là hbh

=>AD//BC

=>AD vuông góc AH

ΔADH vuông tại A có AF là đường cao

nên HF*HD=HA^2=HB*HC

 

8 tháng 4 2023

loading...  

b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Ta có: ΔAHB\(\sim\)ΔCAB(cmt)

nên \(\dfrac{AH}{CA}=\dfrac{HB}{AB}=\dfrac{AB}{CB}\)(Các cặp cạnh tương ứng tỉ lệ)

\(\Leftrightarrow\dfrac{AH}{8}=\dfrac{HB}{6}=\dfrac{6}{10}=\dfrac{3}{5}\)

Suy ra: \(\left\{{}\begin{matrix}\dfrac{AH}{8}=\dfrac{3}{5}\\\dfrac{HB}{6}=\dfrac{3}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=4.8\left(cm\right)\\HB=3.6\left(cm\right)\end{matrix}\right.\)

Vậy: AH=4,8cm; HB=3,6cm

a) Xét ΔAHB vuông tại H và ΔCAB vuông tại A có 

\(\widehat{ABH}\) chung

Do đó: ΔAHB\(\sim\)ΔCAB(g-g)

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

b: ΔABC vuông tại A có AH là đường cao

nên AH^2=HB*HC

28 tháng 3 2022

Đáp án:

a) △ABC∽△HAC△ABC∽△HAC

b) EC.AC=DC.BCEC.AC=DC.BC

c) △BEC∽△ADC△BEC∽△ADC△ABE△ABE vuông cân tại A

Giải thích các bước giải:

a)

Xét △ABC△ABC và △HAC△HAC:

ˆBAC=ˆAHC(=90o)BAC^=AHC^(=90o)

ˆCC^: chung

→△ABC∽△HAC→△ABC∽△HAC (g.g)

b)

Xét △DEC△DEC và △ABC△ABC:

ˆEDC=ˆBAC(=90o)EDC^=BAC^(=90o)

ˆCC^: chung

→△DEC∽△ABC→△DEC∽△ABC (g.g)

→DCEC=ACBC→EC.AC=DC.BC→DCEC=ACBC→EC.AC=DC.BC

c)

Xét △BEC△BEC và △ADC△ADC:

DCEC=ACBCDCEC=ACBC (cmt)

ˆCC^: chung

→△BEC∽△ADC→△BEC∽△ADC (c.g.c)

Ta có: AH⊥BC,ED⊥BCAH⊥BC,ED⊥BC (gt)

→AH//ED→AH//ED

△AHC△AHC có AH//EDAH//ED (cmt)

→AEAC=HDHC→AEAC=HDHC (định lý Talet)

Mà HD=HAHD=HA (gt)

→AEAC=HAHC→AEAC=HAHC

Lại có: △ABC∽△HAC△ABC∽△HAC (cmt)

→ABAC=HAHC→ABAC=HAHC

→AEAC=ABAC→AE=AB→AEAC=ABAC→AE=AB

→△ABE→△ABE cân tại A

Có: AB⊥AE(AB⊥AC)AB⊥AE(AB⊥AC)

→△ABE→△ABE vuông cân tại A

image 

a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có

góc C chung

Do đó: ΔABC\(\sim\)ΔHAC

b: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có

góc C chung

DO đó: ΔCDE\(\sim\)ΔCAB

Suy ra: CD/CA=CE/CB

hay \(CD\cdot CB=CA\cdot CE\)

a: Xét ΔIKC vuông tại K và ΔBAC vuông tại A có

góc C chung

=>ΔIKC đồng dạng với ΔBAC

b: góc IKB+góc IAB=180 độ

=>AIKB nội tiếp

=>gó BKA=góc BIA

=>góc AKC=góc BIC