Từ 1 điểm A nằm ngoài đường tròn (O),bán kính R.Vẽ các tiếp tuyến AB,AC với đường tròn (O)(B,C thuộc (O;R).M là điểm bất kì trên cung nhỏ BC,kẻ MH vuông góc với AB (HEAB),MK vuông góc với AC(KEAC) và MI vuông góc với BC(I EBC).
1.CM:tứ giác BHMI,CKMI nội tiếp
2.Gọi P,Q lần lượt là giao điểm của BM và HI,CM và IK.CM:PQ//BC
3.Tìm GTLN của MH.MI.MK khi điểm M chạy trên cung nhỏ BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét (O):
AB là tiếp tuyến; B là tiếp điểm (gt). \(\Rightarrow\widehat{ABO}=90^o.\)
AC là tiếp tuyến; C là tiếp điểm (gt). \(\Rightarrow\widehat{ACO}=90^o.\)
\(\Rightarrow\) 4 điểm A, B, O, C cùng thuộc một đường tròn đường kính AO.
b) Xét (O):
\(\widehat{ACD}=\widehat{AEC}\) (Góc tạo bởi tia tiếp tuyến và dây; góc nội tiếp cùng chắn \(\stackrel\frown{CD}\)).
Xét \(\Delta ACD\) và \(\Delta AEC:\)
\(\widehat{ACD}=\widehat{AEC}\left(cmt\right).\)
\(\widehat{CAD}chung.\)
\(\Rightarrow\Delta ACD=\Delta AEC\left(g-g\right).\)
\(\Rightarrow\dfrac{AC}{AE}=\dfrac{AD}{AC}.\\ \Rightarrow AC^2=AD.AE.\)
a: Xét tứ giác OASB có
\(\widehat{OAS}+\widehat{OBS}=180^0\)
Do đó: OASB là tứ giác nội tiếp