chứng minh rằng (7n-2)2 -(2n-7)2 luôn chia hết cho 7 với mọi số nguyên n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: (2n-3)n-2n(n+2)=2n^3-3n-2n^3-4n
=-7n chia hết cho 7
Vậy (2n-3)n-2n(n+2) chia hết cho 7 với mọi số nguyên n (đpcm)
(7n - 2)2 - (2n - 7)2
= (7n - 2 + 2n - 7).(7n - 2 - 2n + 7)
= (9n - 9).(9n + 5)
= 9.(n - 1).(9n + 5) chia hết cho 9 ( đpcm)
Ta có: (7n-2)2 -(2n-7)2 = (7n-2 + 2n-7) .(7n-2 - 2n-7)
= (9n-9) . ((5n+(-9))
Ta có n là số nguyên, nếu ta thế 1 số nguyên nào vào hằng đẳng thức trên thì chắc chắn kết quả sẽ chia hết cho 9
Vd : ( 9.7-9).((5.7+(-9))= 54.26= 1404 chia hết cho 9 => (7n-2)2 -(2n-7)2 luôn chia hết cho 9 với mọi giá trị của n là giá trị nguyên .
a: \(=\left(4n-7-5\right)\left(4n-7+5\right)\)
\(=\left(4n-12\right)\left(4n-2\right)\)
\(=8\left(n-3\right)\left(2n-1\right)⋮8\)
Câu a)
Ta có: \(n\left(n+1\right)=n^2+n\)
TH1: Khi n là số chẵn
Khi n là số chẵn thì \(n^2\)cũng là số chẵn
Suy ra \(n^2+n\)chia hết cho 2
TH2: khi n là số lẻ
Khi n là số lẻ thì \(n^2\)cũng là số lẻ
Suy ra \(n^2+n\)chia hết cho 2
Vậy .................
Cấu dưới tương tự
Làm biếng :3
\(\Leftrightarrow\left(3n+7-2n-3\right)\left(3n+7+2n+3\right)\)
\(=\left(5n+10\right)\left(n+4\right)⋮5\)
Do:
\(A=n\left(2n+7\right)\left(7n+7\right)=14n^3+63n^2+49n=14n\left(n+1\right)\left(n+2\right)+3.7n\left(n+1\right)\)
nên A chia hết cho 6
BN thử vào câu hỏi tương tự xem có k?
Nếu có thì bn xem nhé!
Nếu k thì xin lỗi đã làm phiền bn
Hội con 🐄 chúc bạn học tốt!!!
Đề sai rồi bạn
Nếu ta thử n=0 thôi ta sẽ có:
\(\left(7n-2\right)^2-\left(2n-7\right)^2=\left(-2\right)^2-\left(-7\right)^2=4-49=-45\) không chia hết cho 7 :(
em chịu