K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2017

1)

a)251-1

=(23)17-1\(⋮\)23-1=7

Vậy 251-1\(⋮\)7

b)270+370

=(22)35+(32)35\(⋮\)22+32=13

Vậy 270+370\(⋮\)13

c)1719+1917

=(BS18-1)19+(BS18+1)17

=BS18-1+BS18+1

=BS18\(⋮\)18

d)3663-1\(⋮\)35\(⋮\)7

Vậy 3663-1\(⋮\)7

3663-1

=3663+1-2

=BS37-2\(⋮̸\)37

Vậy 3663-1\(⋮̸\)37

e)24n-1

=(24)n-1\(⋮\)24-1=15

Vậy 24n-1\(⋮\)15

13 tháng 8 2019

BS là gì vậy bạn???

15 tháng 8 2018

a) Em tham khảo tại đây nhé:

Câu hỏi của VRCT_Ran love shinichi - Toán lớp 8 - Học toán với OnlineMath

15 tháng 11 2016

giả sử: A= n^2 + 11n + 39 chia hết cho 49 => A chia hết cho 7 
mà : n^2 + 11n + 39 = (n+9)(n+2) +21 chia hết cho 7 
=> (n+9)(n+2) chia hết cho 7 
lại có: (n+9) - (n+2) = 7 nên (n+9) và (n+2) đồng thời chia hết cho 7 
=>(n+9)(n+2) chia hết cho 49 
mà: (n+9)(n+2) +21 chia hết cho 49 
=> 21 chia hết cho 49 vô lí => đpcm 

Bài 2: A=3^ (2*n) + 3^n + 1 
n không chia hết cho 3 nên ta xét 2 trường hợp: 
* n =3k +1: 
A = 3^ (6k + 3) + 3^(3k +1) +1= 9.27^2k +3.27^ +1 
= 9.(26+1)^2k + 3.(26 +1)^k +1 
= 9(2.13 +1)^2k + 3.(2.13 +1)^k +1 
A đồng dư với (9 +3 +1)= 13 theo đồng dư 0 theo (mod 13) 
vậy A chia hết cho 13. 
( Mình giải thích thêm nhé: 
(2.13 +1)^2k chia cho 13 dư 1 
=> 9(2.13 +1)^2k chia cho 13 dư 9 
(2.13 +1)^k chia 13 dư 1 
=> 3.(2.13 +1)^k chia 13 dư 1 
=> A chia 13 dư 9 + 3 +1 = 13 
A = 13.k +13 với k nguyên 
A/13 = k + 1 la số nguyên => A chia hết cho 13 
khi triển khai (x+1)^n = thì các hạng tử đều chứa x trừ hạng tử cuối = 1 nên (x+1)^n chia cho x dư 1.) 
* n = 3k +2: 
A = 3^(6k +4) + 3^(6k +2) +1=81.27^2k +9.27^k +1 
= 81.(2.13+1)^2k + 9(2.13 +1)^k +1 
A đồng dư với ( 81 + 9 +1) = 91 đồng dư 0 theo (mod 13) 
vậy A chia hết cho 13 

15 tháng 11 2016

ban oi mik lon bai rui

1 tháng 1 2016

có biết đâu mà giúp, mong bạn thông cảm cho. Nhớ tick cho mình với

26 tháng 1 2021

1+2+3+4+5+6+7+8+9=133456 hi hi

7 tháng 11 2021

đào xuân anh sao mày gi sai hả