\(x\times x^2\times x^3\times x^4\times...\times x^{100}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(x-3\right)^2\) = \(\left(-3\right)^2\) + \(\left(-4\right)^2\)
\(\left(x-3\right)^2=9+16\)
\(\left(x-3\right)^2=25\)
\(\left(x-3\right)^2=5^2\)
\(\Rightarrow x-3=5\)
\(\Rightarrow x=5+3=8\)
Vậy x = 8
b) -12 . (x - 5) +7 . (3 - x) = 5
-12x + 60 + 21 - 7x = 5
-12x - 7x = 5 - 60 - 21
-19x = -76
x = -76 : (-19) =4
Vậy x = 4
Áp dụng công thức: Nhân 2 lũy thừa cùng cơ số.
Ta có:
\(x\times x^2\times x^3\times...\times x^{100}\)
\(=x^{1+2+3+...+100}\)
\(x=5050\)
\(x.x^2.x^3...x^{100}=x^{1+2+3+...+100}\)
Đặt \(3^{1+2+3+...+100}=3^A\)
Ta có:
\(A=1+2+3+...+100\)
\(\Rightarrow A=100+99+98+...+1\)
\(\Rightarrow A=\left(1+100\right)+\left(2+99\right)+\left(3+98\right)+...+\left(100+1\right)\) ( 50 cặp số )
\(\Rightarrow A=101+101+101+...+101\) ( 50 số 101 )
\(\Rightarrow A=101.50\)
\(\Rightarrow A=5050\)
\(\Rightarrow3^A=3^{5050}\)
Vậy \(x.x^2.x^3...x^{100}=x^{5050}\)
Dấu chấm thay cho dấu nhân nhé!
a) -12.(x-5)+7.(3.x)=5
<=> -12x+60+21+7x=5
<=>-5x+81=5
<=>-5x=5-81=-76
<=>x=-76/-5=76/5=15,2
b) 30.(x+2)-6.(x-5)-24.x=100
<=> 30x+60-6x+30-24x=100
<=> 0x=100-60-30=10
=> không có giá trị nào của x để 0x=10
c) \(|5.x-2|< 13\)
Khi 5x-2 < 13
<=> 5x<15 <=> x<3
Khi 5x-2 <-13
<=> 5x<-11 <=> x<-11/5 <=> x<-2,2
a: \(=12x^2-9x-12x^2-10x+6x+5=-13x+5\)
b: \(=3x\left(x^2-2x+1\right)-2x\left(x^2-9\right)+4x^2-16x\)
\(=3x^3-6x^2+3x-2x^3+18x+4x^2-16x\)
\(=x^3-2x^2+3x\)
c: \(=x^3-3x^2+3x-1+x^3+8+3\left(x^2-16\right)\)
\(=2x^3-3x^2+3x+7+3x^2-48=2x^3+3x-41\)
d: \(=\left(x^3+1\right)\left(x^3-1\right)=x^6-1\)
\(A\left(x-1\right)^{x+2}=\left(x-1\right)^{x+4}\\\Leftrightarrow \left(x-1\right)^{x+4}-\left(x-1\right)^{x+2}=0\\ \Leftrightarrow\left(x-1\right)^{x+2}\left(\left(x-1\right)^{x+2}+1\right)=0\\ \Leftrightarrow\left(x-1\right)^{x+2}=0hoac\left(x-1\right)^{x+2}+1=0\)
Giả tiếp đc x=1
1.
a) \(5x.5x.5x=\left(5x\right)^3.\)
b) \(x^1.x^2.....x^{2006}=x^{\frac{\left(2006+1\right).2006}{2}=}x^{2013021}.\)
c) \(x^1.x^4.x^7.....x^{100}=x^{\frac{\left(100+1\right).\left(\frac{100-1}{3}+1\right)}{2}}=x^{1717}.\)
d) \(x^2.x^5.x^8.....x^{2003}=x^{\frac{\left(2003+2\right).\left(\frac{2003-2}{3}+1\right)}{2}}=x^{669670}.\)
2.
\(2^x+80=3^y\)
Với \(x>0\Rightarrow2^x\) chẵn
Và 80 chẵn
\(\Rightarrow2^x+80\) chẵn.
Mà \(3^y\) lẻ
\(\Rightarrow x< 0.\)
Mà \(x\in N\)
\(\Rightarrow x=0.\)
\(\Rightarrow2^0+80=3^y\)
\(\Rightarrow1+80=3^y\)
\(\Rightarrow3^y=81\)
\(\Rightarrow3^y=3^4\)
\(\Rightarrow y=4.\)
Vậy \(\left(x;y\right)=\left(0;4\right).\)
Chúc bạn học tốt!
a: =>2x-2/3-3x+3/2=1/2x
=>-3/2x=-5/6
=>x=5/6:3/2=5/6x2/3=10/18=5/9
b: =>-3x+3/4-1/3x-1/6=x
=>-13/3x=-7/12
=>x=7/12:13/3=7/12x3/13=21/156=7/52
Bài 1:
a) Ta có: \(A=\left(x+3\right)^2+\left(x-3\right)\left(x+3\right)-2\left(x+2\right)\left(x-4\right)\)
\(=x^2+6x+9+x^2-9-2\left(x^2-4x+2x-8\right)\)
\(=2x^2+6x-2\left(x^2-2x-8\right)\)
\(=2x^2+6x-2x^2+4x+16\)
\(=10x+16\)
Thay \(x=\frac{1}{2}\) vào biểu thức \(A=10x+16\), ta được:
\(A=10\cdot\frac{1}{2}+16=5+16=21\)
Vậy: 21 là giá trị của biểu thức \(A=\left(x+3\right)^2+\left(x-3\right)\left(x+3\right)-2\left(x+2\right)\left(x-4\right)\) tại \(x=\frac{1}{2}\)
b) Ta có: \(B=\left(3x+4\right)^2-\left(x+4\right)\left(x+4\right)-10x\)
\(=9x^2+24x+16-\left(x^2+8x+16\right)-10x\)
\(=9x^2+24x+16-x^2-8x-16-10x\)
\(=8x^2+6x\)
Thay \(x=\frac{1}{10}\) vào biểu thức \(B=8x^2+6x\), ta được:
\(B=8\cdot\left(\frac{1}{10}\right)^2+6\cdot\frac{1}{10}=8\cdot\frac{1}{100}+\frac{6}{10}\)
\(=\frac{8}{100}+\frac{6}{10}\)
\(=\frac{8}{100}+\frac{60}{100}=\frac{17}{25}\)
Vậy: \(\frac{17}{25}\) là giá trị của biểu thức \(B=\left(3x+4\right)^2-\left(x+4\right)\left(x+4\right)-10x\) tại \(x=\frac{1}{10}\)
c) Ta có: \(C=\left(x+1\right)^2-\left(2x-1\right)^2+3\left(x-2\right)\left(x+2\right)\)
\(=x^2+2x+1-\left(4x^2-4x+1\right)+3\left(x^2-4\right)\)
\(=x^2+2x+1-4x^2+4x-1+3x^2-12\)
\(=6x-12\)
Thay x=1 vào biểu thức C=6x-12, ta được:
\(C=6\cdot1-12=6-12=-6\)
Vậy: -6 là giá trị của biểu thức \(C=\left(x+1\right)^2-\left(2x-1\right)^2+3\left(x-2\right)\left(x+2\right)\) tại x=1
d) Ta có: \(D=\left(x-3\right)\left(x+3\right)+\left(x-2\right)^2-2x\left(x-4\right)\)
\(=x^2-9+x^2-4x+4-2x^2+8x\)
\(=4x-5\)
Thay x=-1 vào biểu thức D=4x-5,ta được:
\(D=4\cdot\left(-1\right)-5=-4-5=-9\)
Vậy: -9 là giá trị của biểu thức \(D=\left(x-3\right)\left(x+3\right)+\left(x-2\right)^2-2x\left(x-4\right)\) tại x=-1
= x ^1 +100 = x^101
\(x\times x^2\times x^3\times x^4\times...\times x^{100}=x^{1+2+3+4+...+100}=x^{101\times500}=x^{5050}\)