Tìm A:
A=1+32+33+34+...+311
Chứng minh Rằng Achia hết cho 13,chia hết cho 40
Ai trả lời được mình tick cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1+3+3^2+..........+3^{11}\)
\(\Leftrightarrow A=\left(1+3\right)+\left(3^2+3^3\right)+.........+\left(3^{10}+3^{11}\right)\)
\(\Leftrightarrow A=1\left(1+3\right)+3^2\left(1+3\right)+.........+3^{10}\left(1+3\right)\)
\(\Leftrightarrow A=1.4+3^2.4+.......+3^{10}.4\)
\(\Leftrightarrow A=4\left(1+3^2+..........+3^{10}\right)⋮4\left(đpcm\right)\)
\(S=\left(1+3+3^2\right)+...+3^7\left(1+3+3^2\right)\)
\(=13\left(1+...+3^7\right)⋮13\)
Muốn chứng minh A thì chúng ta phải tìm A trước :
A = 2.A - A
Tính 2.A = 2 . ( 1 + 32 + 33 + 34 +...+311)
2.A = 2 . ( 1 + 33 + 34 + 35+ ... + 311 + 312 )
Tìm A : A= 2A -A
= ( 1 + 33 + 34 + 35+ ... + 311 + 312 ) - ( 1 + 32 + 33 + 34 +...+311)
= 32 + 312
= 314 = 4782969
4782969 chia hết cho 13 nhưng chia không hết cho 40
cảm ơn