K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2020

a) Xét tam giác OAH và tam giác OCH, có:

   OA=OC=R ;  OH chung  ; \(\widehat{OHA}=\widehat{OHC}=90^{O^{ }}\)

=> Tam giác OAH = tam giác OCH (ch-cgv)  => AH=HC (2 cạnh tương ứng)

<=> H là trung điểm cạnh AC (đpcm)

b)  Ta có: AC vuông góc OM tại H, AH=CH nên OM là đường trung trực của AH => MA=MC

      Xét tam giác OAM và tam giác OCM, có:  OA=OC=R ;  MA=MC ; OM chung

=> tam giác OAM = tam giác OCM(c.c.c) => \(\widehat{OAM}=\widehat{OCM}=90^o\)

<=> MC là tiếp tuyến của (O)  (đpcm)

15 tháng 2 2022

a) Xét (O): OB là tiếp tuyến, B là tiếp điểm (gt).

\(\Rightarrow OB\perp MB\) (Tính chất tiếp tuyến).

\(\Rightarrow\widehat{OBM}=90^o\) hay \(\widehat{OBF}=90^o.\)

Xét tứ giác BFHO:

\(\widehat{OBF}=90^o\left(cmt\right).\\ \widehat{OHF}=90^o\left(OH\perp HF\right).\\ \Rightarrow\widehat{OBF}+\widehat{OHF}=180^o.\)

Mà 2 góc ở vị tri đối nhau.

\(\Rightarrow\) Tứ giác BFHO nội tiếp một đường tròn (dhnb).

b) Xét (O): \(OH\perp EF\left(gt\right).\)

\(\Rightarrow\) H là trung điểm của EF.

Xét \(\Delta EFO:\)

OH là đường trung tuyến (H là trung điểm của EF).

OH là đường cao \(\left(OH\perp EF\right).\)

\(\Rightarrow\) \(\Delta EFO\) cân tại O.

26 tháng 3 2015

a) góc OHE = góc OAE = 900 => OHAE nt

b) cmtt tứ giác OHFB nt => góc OFH = góc OBH 

OHAE nt => góc OEH = góc OAH mà góc OAH = góc OBH( tg OAB cân tại O) => góc OEH = góc OFH => tg OEF cân

c) từ cmt => tam giác OIB đồng dạng tam giác OHF => OI/OH = OB/OF => ...