K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2021

Gọi giao điểm của (P) và (d) tại điểm có hoành độ -1 là A(-1;y)

Vì A thuộc (P) => y= 1/2 . (-1)^2 = 1/2 

=> A (1/2;-1)

Vì A thuộc (d)

=> 1/2 = -1 -2m

=> 2m = -1 -1/2 =-3/2

=> m=-3/4

17 tháng 7 2021

b) đường thẳng d: \(y=2x-m\) cắt đồ thị (P) tại điểm có hoành độ bằng 2

\(\Rightarrow\) tọa độ điểm đó là \(\left(2;2\right)\)

\(\Rightarrow2=2.2-m\Rightarrow m=4-2=2\Rightarrow\left(d\right):y=2x-2\)

a) undefined

23 tháng 10 2018

Đáp án B

Lấy đối xứng đồ thị hàm số f(x)(x-1) qua trục Ox ta được đồ thị của hàm số  f x x - 1 . Từ đồ thị hàm số f x x - 1  ta thấy đường thẳng y = m 2 - m  cắt hàm số  f x x - 1  tại 2 điểm nằm ngoài [-1;1]

⇔ m 2 - m > 0 ⇔ [ m < 0 m > 1

19 tháng 1 2018

Đáp án B

Lấy đối xứng đồ thị hàm số  f ( x ) ( x − 1 )  qua trục Ox ta được đồ thị của hàm số  f ( x ) x − 1 . Từ đồ thị hàm số  f ( x ) x − 1  ta thấy đường thẳng  y = m 2 − m  cắt hàm số  f ( x ) x − 1  tại 2 điểm nằm ngoài  [ − 1 ; 1 ] ⇔ m 2 − m > 0 ⇔ m < 0 m > 1

NV
12 tháng 1 2022

Pt hoành độ giao điểm:

\(\sqrt{2x^2-2x-m}-x-1=0\)

\(\Leftrightarrow\sqrt{2x^2-2x-m}=x+1\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\2x^2-2x-m=x^2+2x+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x^2-4x-1=m\left(1\right)\end{matrix}\right.\)

Bài toán thỏa mãn khi (1) có 2 nghiệm pb \(x\ge-1\)

Từ đồ thị hàm \(y=x^2-4x-1\) ta thấy \(-5< m\le4\)

9 tháng 2 2021

a, - Ta có : Đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng 6 .

\(\Rightarrow-\dfrac{b}{a}=-\dfrac{3}{a}=6\)

\(\Rightarrow a=-\dfrac{1}{2}\)

b, - Xét phương trình hoành độ giao điểm :\(3x+2=\left(2m-1\right)x+8\)

\(\Leftrightarrow3x+2=2mx-x+8\)

\(\Leftrightarrow3x+2-2mx+m-8=0\)

\(\Leftrightarrow x\left(3-2m\right)=6-m\)

- Để hai đường thẳng cắt được nhau thì : \(3-2m\ne0\)

\(\Leftrightarrow m\ne\dfrac{3}{2}\)

Vậy ...

 

a) Vì đồ thị hàm số y=ax+3 cắt trục hoành tại điểm có hoành độ bằng 6 nên

Thay x=6 và y=0 vào hàm số y=ax+3, ta được:

\(6a+3=0\)

\(\Leftrightarrow6a=-3\)

hay \(a=-\dfrac{1}{2}\)

Vậy: \(a=-\dfrac{1}{2}\)

b)

Để hàm số y=(2m-1)x+8 là hàm số bậc nhất thì \(2m-1\ne0\)

\(\Leftrightarrow2m\ne1\)

hay \(m\ne\dfrac{1}{2}\)(1)

Để (d) cắt (d') thì \(2m-1\ne3\)

\(\Leftrightarrow2m\ne4\)

hay \(m\ne2\)(2)

Từ (1) và (2) suy ra \(m\notin\left\{\dfrac{1}{2};2\right\}\)