Chứng tỏ và tìm số N:
a) n+2 chia hết cho n-1
b) 2n+7 chia hết cho n+1
Ai làm nhanh nhất mình tick cho
( Nhớ ghi rõ lời giải)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (n+3) Chia hết cho (n-1)
Ta có : (n+3)=(n-1)+4
Vì (n-1) chia hết cho (n-1)
Nên (n+3) chia hết cho (n-1) thì 4 chia hết cho (n-1)
=> n-1 thuộc Ư(4)={1;2;4}
n-1 1 2 4
n 2 3 5
Vậy n thuộc {2;3;5 } thì (n+3) chia hết cho (n-1)
b)(4n+3) chia hết cho (2n+1)
Ta có : (4n+3)=2n.2+1+2
Vì (2n+1) chia hết cho (2n+1)
Nên (4n+3) chia hết cho (2n+1) thì 3 chia hết cho (2n+1)
=> 2n+1 thuộc Ư(3)={1;3}
2n+1 1 3
2n 0 2
n 0 1
Vậy n thuộc {0;1} thì (4n+3) chia hết cho (2n+1)
a)<=>(n-1)+4 chia hết n-1
=>4 chia hết n-1
=>n-1\(\in\){1,-1,2,-2,4,-4}
=>n\(\in\){2,0,3,-1,5,-3}
b)2(2n+1)+2 chia hết 2n+1
=>2 chia hết 2n+1
=>2n+1\(\in\){1,-1,2,-2}
=>n\(\in\){1,-3,3,-5}
a)<=>(n-1)+4 chia hết n-1
=>4 chia hết n-1
=>n-1\(\in\){1,-1,2,-2,4,-4}
=>n\(\in\){2,0,3,-1,5,-3}
b)2(2n+1)+2 chia hết 2n+1
=>2 chia hết 2n+1
=>2n+1\(\in\){1,-1,2,-2}
=>n\(\in\){1,-3,3,-5}
1,
a, n+3 chia hết cho 13
=> n+3 thuộc B(13)
=> n+3=13k (k thuộc N)
=> n=13k-3
Vậy n có dạng 13k-3
b, n-3 chia hết cho n+3
=> n+3-6 chia hết cho n+3
=>6 chia hết cho n+3
=>n+3 thuộc Ư(6) = {1;2;3;6}
=>n thuộc {-2;-1;0;3}
Vì n là stn nên n thuộc {0;3}
c,2n+4+5 chia hết cho n+1
=>2n+2+7 chia hết cho n+1
=>2(n+1)+7 chia hết cho n+1
=>7 chia hết cho n+1
=>n+1 thuộc Ư(7)={1;7}
=>n thuộc {0;7}
d, 2n-7 chia hết cho 3-n
Vì 2(3-n) chia hết cho 3-n
=> 2n-7+2(3-n) chia hết cho 3-n
=> 2n-7+6-2n chia hết cho 3-n
=>-1 chia hết cho 3-n
=>3-n thuộc Ư(-1)={1;-1}
=>n thuộc {2;4}
2,
Ta có: (p-1)p(p+1) chia hết cho 3 mà (p,3)=1 nên (p-1)(p+1) chia hết cho 3 (1)
Vì p là số nguyên tố lớn hơn 3 nên p là số lẻ => p-1 và p+1 là 2 số chẵn liên tiếp, có 1 số là bội 4 nên tích của chúng chia hết cho 8 (2)
Mà (3,8) = 1 (3)
Từ (1),(2),(3) => (p-1)(p+1) chia hết cho 24
Theo bài ra , ta có 3 trg hợp n :
TH1 : n chia hết cho 3 .
Nếu n chia hết cho 3 thì tích trên đã đc chia hết cho 3 .
TH2 : n chia 3 dư 1
Nếu n chia 3 dư 1 thì (n + 2 ) sẽ chia hết cho 3 => tích n(n+2)(n+7) chia hết cho 3 , vì nếu trong tích có một thừa số chia hết cho 3 thì cả tích sẽ chia hết cho 3 .
TH3 : n chia 3 dư 2
Nếu n chia 3 dư 2 thì (n+7) sẽ chia hết cho 3 => tích n(n+2)(n+7) chia hết cho 3 , vì nếu trong tích có một thừa số chia hết cho 3 thì cả tích sẽ chia hết cho 3 .
Vậy : Với mọi trg hợp n thì tích n(n+2)(n+7) đều chia hết cho 3 .
ta có: n(n+2)(n+7) \(⋮\)3.
đặt A = n(n+2)(n+7)
vì n là số tự nhiên. khi chia n cho 3 ta có 3 dạng:n=3k; n=3k+1; n=3k+2 ( k\(\in\) N )
nếu n=3k => n \(⋮\)3
=> A \(⋮\)3. (1)
nếu n=3k+1 => n+2=3k+1+2
=3k+3 \(⋮\)3
=> A \(⋮\)3 (2)
nếu n=3k+2 => n+7=3k+2+7
=3k+9 \(⋮\)3
=> A \(⋮\)3 (3)
từ (1);(2) và (3) => A \(⋮\)3 với mọi n .
vậy n(n+2)(n+7) \(⋮\)3.với mọi n .
chcs năm mới vui vẻ, k nha...
a) n+2 chia het n-1 b) 2n+7 chia het n+1
(n-1)+3 chia hết n-1 2(n+1)+5 chia hết n+1
Suy ra Suy ra
3 chia hết n-1 5 chia het n+1
n-1 thuộc Ư(3) n+1 thuộc Ư(5)
n-1 = 3 ; 1 n+1= 5 ; 1
n= 4 ; 2 n = 4 ; 0
giúp mk đi =(