K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

góc BAD chung

=>ΔABD đồng dạng với ΔACE

b: ΔABD đồng dạng với ΔACE

=>AD/AE=AB/AC

=>AD/AB=AE/AC

Xét ΔADE và ΔABC có

AD/AB=AE/AC

góc DAE chung

=>ΔADE đồng dạng với ΔABC

c: góc A=90-30=60 độ

ΔADE đồng dạng với ΔABC

=>S ADE/S ABC=(AD/AB)^2=1/4

=>S ABC=120cm2

24 tháng 4 2017

Khó king khủng em mới học lớp 4 thôi để em ăn cháo sen bát bảo minh trung làm được ngay nhưng phải làm thêm tí bò húc với lại rượu đế ! la la la la la ta là một con người

10 tháng 3 2017

A) Xét tam giác ABD và tam giác ACE có :

 \(\widehat{A}\)chung

\(\widehat{ADB}\)\(\widehat{AEC}\)( giả thiết)

 vậy tam giác ABD đồng dạng với tam giác ACE ( G-G)

B)Theo phần A ta có tam giác ABD đồng dạng với tam giác ACE nên :

\(\frac{AD}{AB}\)=\(\frac{AE}{AC}\)( ĐỊNH LÍ ĐẢO CỦA ta-LÉT)

TỪ ĐIỀU TRÊN SUY RA : tam giác ADE đồng dạng với tam giác ABC

  vậy góc ADE = góc ABC

23 tháng 5 2017

Hình (tự vẽ)

a) Xét \(\Delta ABDva\Delta ACE\):

\(\widehat{A}\left(chung\right)\)

\(\widehat{E}=\widehat{D}\left(=90'\right)\)

\(=>\Delta ABD\)đồng dạng \(\Delta ACE\left(g-g\right)\)

\(=>\frac{AB}{AC}=\frac{AD}{AE}< =>AB.AE=AC.AD\)

b)xét \(\Delta ADEva\Delta ABC\)

\(\widehat{A}\left(chung\right)\)

\(\frac{AB}{AC}=\frac{AD}{AE}\)

\(=>\Delta ADE\)đồng dạng \(\Delta ABC\left(c-g-c\right)\)

c)Lưu Ý! Đề phải là DE cắt CB tại I

CM:

\(\widehat{IEB}=\widehat{AED}\)(đối đỉnh)

\(\widehat{AED}=\widehat{ACB}\)(tam giác ADE đồng dạng với tam giác ABC)

\(=>\widehat{IEB}=\widehat{ACB}\)

Lại có góc I chung

\(=>\Delta IBE\) đồng dạng với \(\Delta IDC\left(g-g\right)\)

d) từ c)=>\(\frac{IB}{ID}=\frac{IE}{IC}< =>ID.IE=IB.IC=\left(OI-OB\right)\left(OI+OC\right)\)

Mà OC=OB(gt)

\(=>ID.IE=\left(OI+OC\right)\left(OI-OC\right)=OI^2-OC^2\)

30 tháng 4 2022

a. -△AEC và △ADB có: \(\widehat{AEC}=\widehat{ADB}=90^0;\widehat{BAC}\) là góc chung.

\(\Rightarrow\)△AEC∼△ADB (g-g).

\(\Rightarrow\dfrac{AE}{AD}=\dfrac{AC}{AB}\Rightarrow AE.AB=AD.AC\).

\(\Rightarrow\dfrac{AE}{AC}=\dfrac{AD}{AB}\)

b. -△ADE và △ABC có: \(\dfrac{AE}{AC}=\dfrac{AD}{AB};\widehat{BAC}\) là góc chung.

\(\Rightarrow\)△ADE∼△ABC (g-g).

c. -△AEC vuông tại E có: \(\widehat{EAC}=60^0\Rightarrow AE=\dfrac{AC}{2}\)

-△ADE∼△ABC \(\Rightarrow\dfrac{S_{ADE}}{S_{ABC}}=\left(\dfrac{AE}{AC}\right)^2=\dfrac{1}{4}\)

\(\Rightarrow S_{ADE}=\dfrac{1}{4}S_{ABC}=\dfrac{1}{4}.120=30\left(cm^2\right)\)

30 tháng 4 2022

C/m \(AE=\dfrac{AC}{2}\):

-Lấy M là trung điểm BC.

-△AEC vuông tại E có: EM là trung tuyến.

 \(\Rightarrow AM=EM=\dfrac{1}{2}AC\)

\(\Rightarrow\)△AEM cân tại M mà \(\widehat{EAM}=60^0\).

\(\Rightarrow\)△AEM đều \(\Rightarrow AE=AM=\dfrac{AC}{2}\)

17 tháng 5 2023

mình cần gâps huhu

 

23 tháng 4 2016

AI bit chi dum di

23 tháng 4 2016

vẽ hình

a xét tam giác ABD và tam giác ACE có :

chung góc BAC

góc BDA = góc CEA = 90 độ

=> tam giác ABD đồng dạng tam giác ACE (g.g)

b, xét tam giác EHB và tam giác DHC có

góc BDC = góc CFB = 90 độ 

góc BHF = góc DHC ( đối đỉnh )

=> tam giác EHB đồng dạng với tam giác DHC (g.g)

=> \(\frac{HB}{HC}=\frac{HE}{HD}\) 

=> HD . HB = HE . HC ( đpcm )

c, vì tam giác ABD đồng dạng với tam giác ACE ( câu a)

=> \(\frac{AB}{AC}=\frac{AD}{AE}\)  => \(\frac{AE}{AC}=\frac{AD}{AB}\)

xét tam giác ADE và tam giác ABC có 

chung góc BAC

\(\frac{AE}{AC}=\frac{AD}{AB}\) 

=> tam giác ADE đồng dạng với tam giác ABC ( c.g.c) 

=> góc ADE = góc ABC ( đpcm)

20 tháng 1 2019

a, Xét tam giác ABD và tam giác ACE

    +, Chung​ góc A​

    +, Góc ADB = góc AEC( = 90​ độ)

Suy ra tam giác ABD đồng dạng với tam giác ACE