K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBAD vuông tại A và ΔBKD vuông tại K có

BD chung

\(\widehat{ABD}=\widehat{KBD}\)

Do đó: ΔBAD=ΔBKD

b: Xét ΔADI vuông tại A và ΔKDC vuông tại K có

DA=DK

\(\widehat{ADI}=\widehat{KDC}\)

Do đó: ΔADI=ΔKDC

Suy ra: AI=KC

c: Ta có: BA+AI=BI

BK+KC=BC

mà BA=BK

và AI=KC

nên BI=BC

=>ΔBIC cân tại B

mà \(\widehat{IBC}=60^0\)

nên ΔBIC đều

16 tháng 4 2022

cảm ơn

6 tháng 5 2021

sai đề à

 

6 tháng 5 2021

sai de

bucminh

Bài 1 : Cho xOy có Oz là tia phân giác, M là điểm bất kì thuộc tia Oz. Qua M kẻ đường thẳng a vuông góc với Ox tại a cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B cắt tia Ox tại D. Chứng minh tam giác AOM bằng tam giác BOM  ?Bài 2 : Cho tam giác ABC có góc A = 90* và đường phân giác BH (H thuộc AC). Kẻ HM vuông góc với BC (M thuộc BC). Gọi N là giao điểm của AB và MH. Chứng minh tam giác ABH...
Đọc tiếp

Bài 1 : Cho xOy có Oz là tia phân giác, M là điểm bất kì thuộc tia Oz. Qua M kẻ đường thẳng a vuông góc với Ox tại a cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B cắt tia Ox tại D. Chứng minh tam giác AOM bằng tam giác BOM  ?

Bài 2 : Cho tam giác ABC có góc A = 90* và đường phân giác BH (H thuộc AC). Kẻ HM vuông góc với BC (M thuộc BC). Gọi N là giao điểm của AB và MH. Chứng minh tam giác ABH bằng tam giác MBH, tam giác ACE= tam giác AKE?

Bài 3: Cho tam giác ABC vuông tại C có góc A = 60* và đường phân gác của góc BAC cắt BC tại E. Kẻ EK vuông góc AB tại K (K thuộc AB).  Kẻ BD vuông góc với AE tại D (D thuộc AE). Chứng minh tam giác ACE = tam giác AKE

Bài 4: Cho tam giác ABC vuông tại A có đường phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc BC tại H (H thuộc BC). Chứng minh tam giác ABE = tam giác HBE ?

0
Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.a.Chứng minh BA=BIb.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đềuc.Tính các góc của tam giác BCKCho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại...
Đọc tiếp

Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.

a.Chứng minh BA=BI

b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều

c.Tính các góc của tam giác BCK

Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.

a.Chứng minh BA=BI

b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều

c.Tính các góc của tam giác BCK

Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.

a.Chứng minh BA=BI

b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều

c.Tính các góc của tam giác BCK

Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.

a.Chứng minh BA=BI

b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều

c.Tính các góc của tam giác BCK

Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.

a.Chứng minh BA=BI

b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều

c.Tính các góc của tam giác BCK

Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.

a.Chứng minh BA=BI

b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều

c.Tính các góc của tam giác BCK

Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.

a.Chứng minh BA=BI

b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều

c.Tính các góc của tam giác BCK

Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.

a.Chứng minh BA=BI

b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều

c.Tính các góc của tam giác BCK

Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.

a.Chứng minh BA=BI

b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều

c.Tính các góc của tam giác BCK

Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.

a.Chứng minh BA=BI

b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều

c.Tính các góc của tam giác BCK

Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.

a.Chứng minh BA=BI

b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều

c.Tính các góc của tam giác BCK

Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.

a.Chứng minh BA=BI

b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều

c.Tính các góc của tam giác BCK

Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.

a.Chứng minh BA=BI

b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều

c.Tính các góc của tam giác BCK

Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.

a.Chứng minh BA=BI

b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều

c.Tính các góc của tam giác BCK

Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.

a.Chứng minh BA=BI

b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều

c.Tính các góc của tam giác BCK

Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.

a.Chứng minh BA=BI

b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều

c.Tính các góc của tam giác BCK

Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.

a.Chứng minh BA=BI

b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều

c.Tính các góc của tam giác BCK

Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.

a.Chứng minh BA=BI

b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều

c.Tính các góc của tam giác BCK

Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.

a.Chứng minh BA=BI

b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều

c.Tính các góc của tam giác BCK

Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.

a.Chứng minh BA=BI

b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều

c.Tính các góc của tam giác BCK

Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.

a.Chứng minh BA=BI

b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều

c.Tính các góc của tam giác BCK

Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.

a.Chứng minh BA=BI

b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều

c.Tính các góc của tam giác BCK

0

a: BC=15cm

b: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có

BD chung

\(\widehat{ABD}=\widehat{HBD}\)

Do đó:ΔBAD=ΔBHD

c: Xét ΔADK vuông tại A và ΔHDC vuông tại H có

DA=DH

\(\widehat{ADK}=\widehat{HDC}\)

Do đó:ΔADK=ΔHDC

Suy ra: DK=DC và AK=HC

d: Xét ΔBKC có BA/AK=BH/HC

nên AH//KC

4 tháng 5 2022

db

 

 

1 tháng 3 2021

a) Xét tam giác ABD và KBD có :

\(\widehat{BAD}=\widehat{BKD}=90^o\)

BD chung

\(\widehat{ABD}=\widehat{KBD}\left(gt\right)\)

=> tam giác ABD = tam giác KBD (ch-gn)

b) Tam giác ABD = tam giác KBD => AB = KB (2 cạnh tương ứng)

c) tam giác ABD = tam giác KBD => AD = KD (2 cạnh tương ứng)

Xét tam giác ADH và tam giác KDC có 

\(\widehat{ADH}=\widehat{KDC}\)(đối đỉnh)

AD = KD(cmt)

\(\widehat{DAH}=\widehat{DKC}=90^o\)

=> tam giác ADH = tam giác KDC (g.c.g)

=> DH = DC (2 cạnh tg ứng)

=> tam giác DCH cân tại D

=> \(\widehat{DCH}=\widehat{DHC}\)

1 tháng 3 2021

a, Xét tam giác ABD vuông tại A và tam giác KBD vuông tại K ta có: 

BD: cạnh chung; \(\widehat{ABD}=\widehat{KBD}\)

Do đó \(\Delta ABD=\Delta KBD\) 

b, Vì  \(\Delta ABD=\Delta KBD\) nên $AB=KB;AD=KD$ 

c, Xét tam giác ADH vuông tại A và tam giác KDC vuông tại K ta có: 

$AD=KD(cmt)$;\(\widehat{ADH}=\widehat{KDC}\)(dd)

Do đó \(\Delta ADH=\Delta KDC\)

Hay DH=DC. Suy ra \(\widehat{DHC}=\widehat{DCH}\)

3 tháng 5 2019

A B C H D K

a) Xét \(\Delta ABC\)có AB = 5cm; AC = 12cm. Theo định lý Py-ta-go ta có:

       \(BC^2=AB^2+AC^2\)

       \(BC^2=5^2+12^2\)

       \(BC^2=25+144\)

       \(BC^2=169\) 

        \(BC=13\)

Vậy cạnh BC = 13cm

b)Xét tam giác AHD và tam giác AKD ta có:

      \(\widehat{AHD}=\widehat{AKD}=90^o\)

       AD chung

       \(\widehat{DAH}=\widehat{DAK}\)(AD là tia phân giác)

=> tam giác AHD = tam giác AKD (g.c.g)

     

3 tháng 5 2019

Bạn có thể làm ý d được ko ạ

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Vậy: BC=10cm

b) Xét ΔAHD vuông tại H và ΔAKD vuông tại K có

AD chung

\(\widehat{HAD}=\widehat{KAD}\)(AD là tia phân giác của \(\widehat{HAK}\))

Do đó: ΔAHD=ΔAKD(cạnh huyền-góc nhọn)

c) Ta có: ΔADH vuông tại H(gt)

nên \(\widehat{HDA}+\widehat{HAD}=90^0\)(hai góc nhọn phụ nhau)

hay \(\widehat{BDA}+\widehat{HAD}=90^0\)(2)

Ta có: \(\widehat{BAD}+\widehat{CAD}=\widehat{BAC}\)(tia AD nằm giữa hai tia AB,AC)

nên \(\widehat{BAD}+\widehat{KAD}=90^0\)(3)

Từ (2) và (3) suy ra \(\widehat{BDA}=\widehat{BAD}\)

Xét ΔBAD có \(\widehat{BDA}=\widehat{BAD}\)(cmt)

nên ΔBAD cân tại B(Định lí đảo của tam giác cân)